

Geotechnical Investigation

Golden Plough Lodge - Long Term Care Redevelopment 555 Courthouse Road, Cobourg, Ontario

Submitted to:

Mr. Mark McIntosh County of Northumberland

555 Courthouse Road Cobourg, Ontario K9A 5J6

Submitted by:

Golder Associates Ltd.

100 Scotia Court, Whitby, Ontario, L1N 8Y6, Canada

+1 905 723 2727

18111688 REV 1

August 9, 2019

Distribution List

4 Copies - Salter Pilon Architecture

- 1 Copy County of Northumberland
- 1 e-Copy Golder Associates Ltd.

Table of Contents

1.0	INTRO	DDUCTION1
2.0	BACK	GROUND1
3.0	SITE A	AND PROJECT DESCRIPTION1
4.0	INVES	TIGATION PROCEDURE1
5.0	SUBS	URFACE CONDITIONS2
	5.1	Topsoil Fill
	5.2	Fill Materials4
	5.3	Sandy Silt4
	5.4	Silty Clay4
	5.5	Till-Like Clayey Sand to Silty Sand5
	5.6	Sandy Silty Clay Till
	5.7	Silty Sand Till
	5.8	Shallow Groundwater
	5.9	Analytical Laboratory Testing
	5.9.1	Environmental Chemical Analysis7
6.0	DISCU	JSSION8
	6.1	General
	6.2	Project Description
	6.3	Preliminary Foundation Design for the Proposed Building8
	6.3.1	Option 1 – Conventional Construction on Engineered Fill9
	6.3.1.1	Engineered Fill9
	6.3.1.2	Consolidation Settlement
	6.3.1.3	Building Foundations on Engineered Fill11
	6.3.1.4	Floor Slabs on Engineered Fill12
	6.3.2	Option 2 – Construction on Existing Fill Using Ground Improvement13
	6.4	Foundation Excavations13
	6.5	Seismic Consideration

8.0	CLOS	URE	19
7.0	MONI	TORING AND TESTING	19
	6.9	Corrosivity Test Results	18
	6.8	Excess Soil Disposal	17
	6.7	Pavement Design	16
	6.6.3	Trench Backfill	15
	6.6.2	Pipe Bedding and Cover	15
	6.6.1	Excavations and Groundwater Control	14
	6.6	Site Servicing	14

ATTACHMENTS

Figure 1 – Key Plan Figure 2 – Borehole Location Plan Figure 3 to 9 – Grain Size Distribution and Plasticity Charts Method of Soil Classification Abbreviations and Terms Used on Records of Boreholes and Test Pits List of Symbols Record of Boreholes (16-1 to 16-6, 18-1 to 18-17 and 18-19 to 18-22)

APPENDICES

APPENDIX A Important Information and Limitations of This Report

APPENDIX B Cone Penetration Test Results

APPENDIX C Analytical Laboratory Testing

APPENDIX D

Figures D1 to D4 – Oedometer Test Results

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by the County of Northumberland (the County) to carry out a geotechnical investigation for the proposed Golden Plough Lodge long term care redevelopment, in Cobourg, Ontario as shown on the Key Plan on Figure 1.

The purpose of the geotechnical investigation was to obtain information on the general subsurface soil and groundwater conditions at the site by means of a limited number of boreholes and based on our interpretation of the collected information, provide geotechnical recommendations for the design and construction of the proposed development.

The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within eighteen months of the date of the report, Golder should be given an opportunity to confirm that the recommendations are still valid. In addition, this report should be read in conjunction with the attached *"Important Information and Limitations of This Report"*, included in Appendix A. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2.0 BACKGROUND

Golder previously completed a preliminary geotechnical investigation at the site and the results were presented in our report entitled, '*Proposed Long Term Care Facility, 555 Courthouse Road, Cobourg, Ontario*' dated June 28, 2017 (Project No. 1655862). As part of the preliminary geotechnical investigation, Golder drilled a total of six (6) boreholes (identified as 16-1 to 16-6) at the site. The locations of the previous boreholes are shown on the Borehole Location Plan, Figure 2, and the results of these boreholes are incorporated in this report.

3.0 SITE AND PROJECT DESCRIPTION

The site is an irregular 'L' shaped parcel of land, approximately 6.0 hectares (14.7 acres) in area and is located at the northwest corner of the intersection of Elgin Street West and Burnham Street, in Cobourg, Ontario, with the site boundaries as shown on Figure 2. A drainage ditch traverses the site from the centre of the site extending to the northern limits where it outlets into an off-site pond. Grass coverage is present across the site except to the east and south portions of the site where pavement and building structures are present. Residential dwellings located along the south side of Courthouse Road, proposed to be removed from site, are present at the southern limits of the site. Based on the existing topography of the site, the site generally slopes down towards the north, with the existing grade ranging in elevations from approximately Elev. 109 m (near the southern boundary) to Elev. 104 m (near the northern boundary).

4.0 INVESTIGATION PROCEDURE

The field work for this geotechnical investigation was carried out between December 17 to 21, 2018 during which time twenty-one boreholes (18-1 to 18-17 and 18-19 to 18-22) were advanced at the site. Borehole 18-18 was eliminated from our drilling program due to the presence of undetectable underground utilities in the area. As previously noted, six boreholes (Boreholes 16-1 to 16-6) were previously advanced at the site as part of the preliminary geotechnical investigation. In addition, subsequent to the drilling fieldwork, Golder revisited the site on April 10 and 11, 2019 and carried out eight in-situ Cone Penetration tests (CPTs) near the locations of Boreholes 16-4, 18-1, 18-3, 18-5, 18-6, 18-7, 18-9 and 18-12. In addition, four Shelby tube samples of the clayey and till-like deposit were obtained from new boreholes advanced adjacent to Boreholes 18-1, 18-3, 18-6 and 18-7. The

locations of the current and previous boreholes, twenty-seven boreholes and eight CPTs in total, are shown on the Borehole Location Plan, Figure 2, attached.

The boreholes were drilled using a track-mounted drill rig supplied and operated by specialist drilling contractors, subcontracted to Golder. Soil samples were obtained at intervals of depth of about 0.75 m and 1.5 m, using a 50 mm outside diameter split-spoon sampler driven by an automatic hammer in accordance with Standard Penetration Test (SPT) procedures (ASTM D1586). The split-spoon samplers used in the investigation limit the maximum particle size that can be sampled and tested to about 38 mm. Therefore, particles or objects that may exist within the soils that are larger than this dimension would not be sampled or represented in the grain size distributions. Field vane shear tests using standard 'N' size vanes (ASTM D2573) were carried out in soft cohesive soils to assess the undrained shear strengths of the cohesive soils. The results of the in-situ field tests (i.e., SPT 'N'-values and undrained shear strengths) as presented on the borehole records and in Section 5.0 of this report are uncorrected.

The CPT, an in-situ testing technique used for the nearly continuous characterization of the subsurface soils, was carried out by Conetec Investigations Ltd. (Conetec), under our supervision, from the existing ground surface to refusal, which was encountered at depths ranging from about 3.4 m to 11.9 m below the existing ground surface. The results of the CPT testing prepared by Contec are provided in Appendix B.

The shallow groundwater conditions were noted in the open boreholes during drilling and six 50 mm diameter monitoring wells were installed in Boreholes 16-1, 16-2, 18-8, 18-13, 18-15 and 18-22 and one 19 mm diameter piezometer was installed in Borehole 16-4 to allow for further monitoring of groundwater levels. The remaining boreholes were backfilled and sealed upon completion of drilling in accordance with current environmental regulations.

The field work for this investigation was directed by a member of our engineering staff, who also logged the boreholes and took custody for the recovered soil samples. All soil samples obtained during this investigation were brought to our Whitby laboratory for further examination, natural water content testing and selective soil classification testing. Select soil samples were submitted to AGAT Laboratories Ltd. (AGAT) in Mississauga for analytical testing and corrosivity testing and the results contained in Appendix C. In addition, one-dimensional consolidation (oedometer) tests were carried out on four relatively undisturbed Shelby tube samples from the clayey deposit as tested in our Mississauga laboratory and the results are contained in Appendix D.

The as-drilled borehole locations for the preliminary geotechnical investigation were surveyed by the County and the corresponding ground elevations were provided to Golder in an email dated June 13, 2016. The as-drilled borehole locations for the 2018 geotechnical investigation were surveyed by Golder using a Trimble Geo 7X H-Star GPS capable of 0.1 m accuracy, and as such, the corresponding ground surface elevations should be considered to be approximate. The ground surface elevations are referenced to geodetic datum. The ground surface elevations at the CPT locations were advanced from approximately the same ground elevation as the nearby boreholes.

5.0 SUBSURFACE CONDITIONS

The subsurface soil and shallow groundwater conditions encountered in the boreholes, CPTs as well as the results of the in situ and laboratory testing are shown in detail on the Record of Borehole sheets following the text of this report. Golder's *"Methods of Soil Classification"*, *"Abbreviations and Terms Used on Records of Boreholes and Test Pits"* and *"List of Symbols"* are attached to assist in the interpretation of the borehole records. Soil laboratory test results are shown on Figures 3 to 9 and the results of the oedometer testing are shown on Figures

D1 to D4 in Appendix D. It should be noted that the boundaries between the soil strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes. The following is a summarized account of the subsurface conditions encountered in the boreholes drilled during this investigation, followed by more detailed descriptions of the major soil strata and shallow groundwater conditions.

The fill materials containing organic materials generally extended to depths ranging from about 0.6 m to 2.9 m below existing ground surface in all boreholes. A localized "probable fill" layer was encountered in Borehole 18-5 which extended to a depth of about 4.0 m below existing ground surface. Underlying topsoil and fill materials, the native subsoil conditions within majority of the north portion of the site generally consist of deposits of cohesive very stiff to soft silty clay and till-like clayey sand to silty sand. The silty clay and till-like deposit are variable and generally become thicker and deeper towards the north, extending to depths of up to about 11.7 m (Borehole 18-3) below the existing ground surface. Glacial till ranging in gradation from sandy silty clay till to silty sand till was encountered below the silty clay and till-like deposit in the majority of the boreholes. The subsurface soil conditions underlying the fill within the southern portion of the site consist of shallow deposits of silty clay overlying extensive deposits of dense to very dense silty sand till. The groundwater level ranges from just below ground surface to about 3 m below ground surface. The results of the CPT testing, as contained in Appendix B, are generally consistent with the results of the boreholes.

5.1 Topsoil Fill

Surficial topsoil fill was encountered at all twenty-seven borehole locations with thicknesses ranging from approximately 50 mm to 700 mm. The approximate thickness of the topsoil fill encountered at each borehole location are provided in the table below.

Borehole No.	Topsoil Fill Thickness (mm)	Borehole No.	Topsoil Fill Thickness (mm)
16-1	130	18-9	180
16-2	690	18-10	690
16-3	610	18-11	410
16-4	450	18-12	130
16-5	610	18-13	690
16-6	610	18-14	250
18-1	250	18-15	150
18-2	50	18-16	200
18-3	150	18-17	690
18-4	150	18-19	690

Borehole No.	Topsoil Fill Thickness (mm)	Borehole No.	Topsoil Fill Thickness (mm)
18-5	130	18-20	690
18-6	200	18-21	690
18-7	690	18-22	690
18-8	200		-

5.2 Fill Materials

Inorganic dark brown to brown and grey fill materials consisting silty clay and clayey silt, sand and silty sand, containing organic materials and rootlets, were encountered below the topsoil fill in all boreholes except 16-6, 18-17 and 18-19 and 18-20. Buried pockets of topsoil/organics was encountered within the fill in Borehole 18-2, 18-4, 18-6, 18-8, 18-10 and 18-11, between depths of 1.6 m and 2.0 m below existing ground surface. The existing fill extended to depths ranging from 0.6 m to 2.9 m below existing ground surface. Probable fill was encountered in Borehole 18-5 and extended from a depth of 2.1 m to a depth of 4.0 m below the existing ground surface. It should be noted that this probable fill encountered in Borehole 18-5 may be native and should be confirmed within the excavations during construction. Standard penetration tests carried out within the cohesive fill measured 'N'-values ranging from 2 blows to 36 blows per 0.3 m penetration, indicating a soft to hard consistency. Standard penetration tests carried out within the non-cohesive fill measured 'N'-values ranging from about 7 percent to 27 percent, whereas the in-situ water contents of the non-cohesive fill samples ranged from about 8 percent to 18 percent.

5.3 Sandy Silt

Localized non-cohesive deposits of brown sandy silt were encountered below the fill materials in Boreholes 16-1, 16-2, 16-3 and 18-16 at the north portion of the site and extended to depths ranging from 1.4 m to 2.9 m below existing ground surface. Standard penetration tests carried out within the sandy silt measured 'N'-values ranging from 9 blows to 19 blows per 0.3 m of penetration, indicating a loose to compact state of compactness. The natural water contents of the sandy silt samples ranged from about 14 percent to 22 percent. A single grain size distribution curve for a sample of the sandy silt, from the 2016 investigation, is shown on Figure 3.

5.4 Silty Clay

Cohesive deposits of brown to grey silty clay were encountered in all boreholes, with exception to Boreholes 16-5, 18-13, 18-20, 18-20 and 18-22. The silty clay was generally encountered below the existing fill materials and extended to depths widely ranging from 1.4 m to 10.1 m below ground surface. Boreholes 16-1, 16-2, 18-14, 18-15 and 18-17 were terminated within the silty clay. Standard penetration tests carried out within the silty clay deposit measured 'N'-values ranging from 2 blows to 28 blows per 0.3 m of penetration. In-situ shear vane testing carried out within the silty clay deposit measured undrained shear strengths ranging from 24 kPa to 68 kPa with 5 tests recording greater than 96 kPa. The SPT 'N'-values together with the undrained shear strengths indicate the silty clay has a soft to very stiff consistency.

The natural water contents of the silty clay samples ranged from about 13 percent to 28 percent. Seven grain size distribution curves for samples of silty clay, five from the 2018 and 2019 investigations and two from the 2016

investigation, are shown on Figures 4 and 5. Atterberg limits testing was performed on seven selected samples of the silty clay, five from the 2018 and 2019 investigations and two from the 2016 investigation, and the results are shown on Figure 6. The results indicated plastic limits ranging from about 14 percent to 17 percent, liquid limits of ranging from about 25 percent to 35 percent and plasticity indices ranging from about 9 percent to 17 percent, resulting in classification as a silty clay of low to intermediate plasticity.

The result of oedometer testing for two samples of the silty clay from Boreholes 18-6 and 18-7 are shown on Figures D3 and D4 in Appendix D.

5.5 Till-Like Clayey Sand to Silty Sand

Cohesive till-like deposits of a grey clayey sand to silty sand were encountered in Boreholes 16-3, 18-1, 18-3, 18-5, 18-6, 18-7, and 18-16. The till-like materials have a similar gradation to a glacial till but are generally of much softer consistency than tills. The till-like material was generally encountered below the silty clay and extended to depths ranging from 5.0 m to 11.7 m below the existing ground surface. Boreholes 16-3, 18-1, 18-6 and 18-16 were terminated within the till-like deposit. Standard penetration tests carried out within the till-like deposit measured 'N'-values ranging from 4 blows to 19 blows per 0.3 m of penetration. A single in-situ shear vane testing carried out within the till-like deposit measured a shear strength of about 43 kPa. The SPT 'N'-values together with the undrained shear strengths indicate that the deposit has a firm to very stiff consistency. The natural water contents of the till-like clayey sand to silty sand are shown on Figure 7. A plasticity chart showing the results of Atterberg limits testing performed on two selected samples of the till-like clayey sand to silty sand are shown on Figure 8. The results indicated plastic limits of about 9 percent, liquid limits ranging from about 12 percent to 13 percent and plasticity indices ranging from about 3 percent to 4 percent, indicating that the fines have slight plasticity.

The result of oedometer testing for two samples of the till-like clayey sand to silty sand from Boreholes 18-1 and 18-3 are shown on Figures D1 and D2 in Appendix D.

5.6 Sandy Silty Clay Till

Cohesive deposits of a brown sandy silty clay till were encountered generally below the silty clay in Boreholes 16-4, 18-9 and 18-10 and extended to depths ranging from 5.5 m to 7.1 m below ground surface. Borehole 16-4 was terminated within the silty clay till at a depth of 6.6 m below existing ground surface. Standard penetration tests carried out within the silty clay till measured 'N'-values ranging from 18 blows to 31 blows per 0.3 m of penetration, indicating a very stiff to hard consistency. The natural water contents of the silty clay till samples ranged from about 8 percent to 15 percent.

5.7 Silty Sand Till

Non-cohesive strata of brown to grey (gravelly) silty sand till were encountered in all boreholes, with exception to Boreholes 16-1 through 16-4, 18-1, 18-6 and 18-14 through 18-17. The silty sand till was generally encountered below the existing fill materials in the southern portions of the site or below the silty clay in the northern portions of the site. Boreholes 16-3, 16-4, 18-2 though 18-5, 18-8 through 18-13 and 18-19 through 18-22 were terminated within the silty sand till. Standard penetration tests carried out within the silty sand till measures 'N'-values ranging from 18 blows per 0.3 m of penetration to greater than 50 blows per 0.05 m of penetration, indicating a compact to very dense state of compactness.

The natural water contents of the silty sand till samples generally ranged from about 4 percent to 10 percent, however two samples had natural water contents of 15 per cent and 22 percent. Four grain size distribution curves for samples of silty sand till, three from the 2018 investigation and one from the 2016 investigation, are shown on Figure 9. Atterberg limits testing performed on three samples of the silty sand till returned a non-plastic result.

5.8 Shallow Groundwater

Details of the observed groundwater conditions encountered during and upon completion of drilling are provided on the Record of Borehole sheets. Subsequent groundwater levels measured within the monitoring wells and piezometer were taken on May 27, May 31 and June 3, 2016 and January 4, 2019. The results of the subsequent groundwater levels readings are provided in the table below.

	Ground Surface Elevation (m)	Water Level on May 27, 2016		Water Level on May 31, 2016		Water Level on June 3, 2016		Water Level on Jan 4, 2019	
Borehole No.		Below Ground Surface (m)	Elevation Above Sea Level	Below Ground Surface (m)	Elevation Above Sea Level	Below Ground Surface (m)	Elevation Above Sea Level	Below Ground Surface (m)	Elevation Above Sea Level
16-1	104.4	4.7	99.7	4.9	99.5	4.8	99.6	0.3	104.1
16-2	106.0	1.8	104.2	1.8	104.2	1.8	104.2	0.8	105.2
16-4	106.9	1.5	105.4	-	-	2.5	104.4	1.3	105.6
18-8	106.5	-	-	-	-	-	-	2.6	103.9
18-13	108.3	-	-	-	-	-	-	1.4	106.9
18-15	105.0	-	-	-	-	-	-	2.8	102.2
18-22	107.7	-	-	-	-	-	-	1.9	105.8

It should be noted that these observations reflect the shallow groundwater conditions encountered at the borehole locations during the time of the field investigation and some seasonal fluctuations should be anticipated.

5.9 Analytical Laboratory Testing

During our investigation, there was no evidence of potential environmental impact on the recovered soil samples, including: staining, and discolouration or odours that are potentially associated with petroleum hydrocarbons or other contaminants. However, eight soil samples were collected for analytical testing from the subject site for metals and inorganics. The samples were placed into laboratory supplied sampling containers and stored on ice/refrigerated until delivered, under chain-of-custody documentation, to AGAT for testing. A summary of the completed analytical testing and sampling locations is presented in the table below.

Analytical Laboratory Test Package	Number of Tests	Sampling Location
Metals and Inorganics O. Reg. 153	8	18-1, 18-3, 18-10 18-11, 18-13, 18-20

5.9.1 Environmental Chemical Analysis

Golder submitted eight fill/native soil samples from the site to assess the general chemical quality of the soil materials and to assess the suitability of any excess soil materials for off-site reuse and/or disposal. The samples were delivered to AGAT for analysis of metals and inorganics. The analytical results were compared to the Ontario Ministry of the Environment ("MOE"¹) *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, April 15, 2011, Table 1 Full Depth Background Site Condition Standards for Residential / Parkland / Institutional / Industrial / Commercial / Community Property Use (Table 1 Standards). The laboratory certificates of analysis are provided in Appendix C and a summary of the soil sampling program (including exceedances) is presented in the table below.

			Sample Depth	Parameters in Exceedance	
Borenoie	Sample	Soli Description	(mbgs)	MOE Table 1	
18-1	2	Silty Clay Fill	0.8 – 1.2	None	
18-3	1	Silty Clay Fill	0.0 - 0.6	None	
18-10	2	Silty Clay Fill	0.8 – 1.2	None	
18-10	5	Silty Clay	3.1 – 3.5	None	
18-11	4	Silty Clay Fill	2.3 – 2.7	None	
18-13	1	Topsoil/Topsoil Fill	0.0 - 0.6	None	
18-13	3	Silty Sand Till	1.5 – 2.0	None	
18-20	1	Topsoil/Topsoil Fill	0.0 - 0.6	None	

In summary, the reported concentrations for all parameters of the eight soil samples were below the values listed on Table 1 Standards. Further comments on off-site disposal and reuse of the soil are provided in Section 6.8

¹ MOE was recently renamed the Ministry of the Environment, Conservation and Parks ("MECP"); however, the generic site condition standards and associated guidance documents were released by the MOE and the standards are still legally referred to as the MOE standards.

6.0 **DISCUSSION**

6.1 General

This section of the report provides engineering information for the geotechnical design aspects of the project, based on our interpretation of the borehole information and on our understanding of the project requirements. The information in this portion of the report is provided for the guidance of the design engineers and professionals. Where comments are made on construction, they are provided only in order to highlight aspects of construction that could affect the design of the project. Contractors bidding on or undertaking any work at the site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

Our professional services for this assignment address only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside of the terms of reference for this report. However, a limited environmental chemical analysis has been carried out on selected samples as discussed further below.

6.2 **Project Description**

It is understood that the County is at the detailed stage of the design and planning of a new long-term care facility, The Golden Plough Lodge. The project will consist of a structure (maximum 3 stories high) along with the associated above ground parking, driveway and underground servicing. It is understood that the proposed structure will be designed as a slab-on-grade type structure (i.e. without a basement) for majority of the building footprint, with exception to the northeast portion of the building where one lower level with a walk-out is proposed, as shown on Figure 2.

The finished floor elevation of the building floor slab on the main level is noted to be at Elev. 108.9 m, whereas the finished floor level for the lower level/walk-out portion is noted to be at Elev. 104.9 m. The existing ground surface across the site ranges from approximately Elev. 109 m (near the southern boundary) to Elev. 104 m (near the northern boundary). Based on the preliminary site grading plan drawing provided and the finished floor levels, the final grade within the main level of the building will generally match existing grade at the south at about Elev. 109 m, and will be raised transitioning to the north of the site, with the maximum grade raise being in the order of 3.5 m above the existing grade near the north end of the proposed building. Based on the existing grade and the finished floor level of the lower level/walk-out portion of the building, the construction of the lower level of the building will require excavations in the range of 1.5 m to 3.5 m below the existing ground surface for the construction of the floor slab and footings.

The proposed inverts for the underground servicing are currently unknown, however, it is assumed that the excavations for the servicing will require excavations in the range of 1.5 m to 4 m below the existing ground surface.

6.3 Preliminary Foundation Design for the Proposed Building

Based on the result of our geotechnical investigation, the subsurface soil conditions within the proposed building footprint consist of existing fill which extends to depths ranging from 0.6 m to 2.9 m below the existing ground surface across the building footprint. A localized "probable fill" was encountered in Borehole 18-5 which extends

to a depth of about 4 m below ground surface. The existing fill is undocumented (i.e. no source records or placement/compaction records) and is therefore unsuitable to support the building foundations or floor slabs. In addition, the existing fill is generally underlain by soft to very stiff silty clay and weak till-like deposits with variable thickness, depth and consistency. Due to the presence of the compressible soils, the proposed grade raise will result in consolidation (i.e. time dependent) settlement which will necessitate the need for pre-loading prior to the construction of the floor slab and foundations.

In this regard, the following two options, discussed further below, are currently being considered for supporting the building foundations and floor slabs:

- Option 1 Conventional Construction on Engineered Fill. This will involve the removal of the existing fill and replacing with engineered fill to the finished grade level, and preloading until the majority of the consolidation settlement of the underlying compressible deposits is dissipated prior to construction of the foundations and floor slabs; and
- Option 2 Construction on Existing Fill Using Ground Improvement Technologies. The use of ground improvement technologies, such as rammed aggregate piers, will allow for support of the building foundations and floor slab as well as assist with reducing consolidation settlement. However, even with piers extending to below the weaker silty clay and till-like materials, preloading will likely still be required but the duration of the consolidation settlement may be shorter than for Option 1.

6.3.1 Option 1 – Conventional Construction on Engineered Fill6.3.1.1 Engineered Fill

Under this option, the existing topsoil and all existing fill materials must be excavated and removed from the building footprints and replaced with engineered fill. This engineered fill should also be used to raise to the finished grade and act as the preload fill.

Prior to placing any engineered fill for the proposed buildings, the topsoil and all fill within the proposed building footprints must first be stripped to expose the native soils. As minimum, the extent of the excavations must extend beyond the building footprint by the equivalent of the excavation depth plus one metre. The excavations must allow (as a minimum) for safe 1 horizontal:1 vertical (1H:1V) temporary slopes under OHSA for Type 3 soils. The excavated base should then be proofrolled in conjunction with an inspection by Golder to confirm that the exposed soils are native, undisturbed and competent, and have been adequately cleaned of ponded water and all disturbed, loosened, softened, organic and other deleterious material. Remedial work (i.e. sub-excavation and replacement) should be carried out as directed by Golder.

Given the variability of the soils within the building footprint, in order to achieve relatively uniform soil support for the foundations and the floor slab, and to prevent large differential settlements, it is recommended that the engineered fill consist of granular soils (e.g. OPSS.PROV 1010 Granular 'B' Type I or II). Other fill types could be considered in consultation with Golder.

Due to the clayey nature of the existing on-site soils, their reuse as engineered fill will result in lower soil bearing resistances to support the foundations, and as such, larger footing dimensions would be required. With larger footings, foundation loads will be transferred deeper and into the weak deposits at depth and will result in larger total and differential settlements. In this regard, the excavated existing fill and native soils are not considered to be suitable for use as engineered fill within the building envelope.

The approved materials for engineered fill should be placed in maximum 300 mm loose lifts and uniformly compacted to at least 100 percent of standard Proctor maximum dry density throughout. The engineered fill should be placed to the finished floor level of the building. The placement of engineered fill must be monitored by Golder personnel on a full-time basis. As the loading of the engineered fill will result in consolidation (time-dependent) settlement of the underlying weaker clayey soils, the construction of the floor slab and foundation must be delayed until the consolidation settlement has dissipated, through pre-loading, as described further below in Section 6.3.1.2

Permanent engineered fill slopes, if any, and the preload should be 2H:1V or flatter and should be covered with topsoil and sodded or otherwise treated to reduce surface erosion. Maintenance will be required over the first several years until the vegetative mat has taken root.

The final surface of the engineered fill should be protected as necessary from construction traffic and should be sloped to provide positive drainage for surface water during and following the construction period. Water must not be allowed to pond on the engineered fill. During periods of freezing weather, additional soil cover should be placed above final subgrade to provide for frost protection. Prior to placing any additional engineered fill, the surface of the existing engineered fill must be re-inspected by Golder.

6.3.1.2 Consolidation Settlement

Deposits of compressible silty clay and till-like materials with variable thicknesses and consistency were encountered within the proposed building footprint, with the thickest deposits being in the northern portion of the building where the largest grade raise is proposed. Four oedometer tests were carried out on samples of the compressible silty clay and till-like deposits extracted from the following boreholes. The results, which are shown on Figures D1 to D4 included in Appendix D, were used to assess the deformation parameters for the calculation of consolidation settlement of the underlying compressible deposits under the anticipated loads of the grade raise.

Borehole	Soil Description	Approximate Sample Depth Below Ground Surface (m)	Approximate Sample Elevation (m)
18-1	Till-Like Clayey Sand to Silty Sand	7.0 – 7.5	98.3 – 97.8
18-3	Till-Like Clayey Sand to Silty Sand	10.4 – 10.9	95.2 – 94.7
18-6	Silty Clay	5.5 – 5.9	100.5 – 100.1
18-7	Silty Clay	7.5 – 7.9	99.0 – 98.6

Based on the parameters obtained from empirical correlations with laboratory index testing, CPT results, and oedometer testing, placement of up to 3.5 m of engineered fill above the existing grade will result in consolidation settlement (i.e. time dependent settlement) of the underlying silty clay and till-like strata.

Utilizing the parameters, grade raises of up to 3.5 m above the current ground levels will result in estimated total settlement of up to on the order of 50 mm (i.e. consolidation settlement of up to 20 mm, and immediate settlement of up to 30 mm). As the thickness of the compressible deposits is variable across the site, the actual amounts of settlement under the proposed grade raise will also vary, which will result in in differential settlement along the

length of the building and across the building footprint if mitigation measures (i.e. such as preloading and/or ground improvement) are not carried out.

Further, based on the results of our analysis, the calculated time for 90 percent of the consolidation settlement to take place is estimated to range between 4 months and 6 months. However, based on our local experience, the calculated values frequently overestimate the actual time for 90 percent consolidation and the actual time required to reach 90 percent consolidation may be shorter (i.e. in the order of about 3 months). In this regard, we strongly recommend that sufficient number of settlement plates be installed at the site during construction for monitoring of the settlement progress and to confirm sufficient degree of consolidation has occurred prior to construction of the foundations and floor slabs. The time for consolidation should be taken into account in scheduling of construction for the proposed development. It is recommended that the construction of the foundations and floor slab under Option 1 be delayed until at least 90 percent of the consolidation settlement has taken place.

6.3.1.3 Building Foundations on Engineered Fill

Once the engineered fill is placed and the consolidation settlement of the underlying clayey soils has essentially dissipated, the proposed building may then be founded on conventional shallow spread and/or continuous strip footings bearing in the engineered fill at a minimum depth of 1.4 m below the finished grade. Based on the preliminary foundation layout drawing entitled "*Golden Plough Lodge Redevelopment, Foundation Plan*" Drawing No. S1-01 prepared by Stephenson Engineering, the strip footings no greater than 1.5 m in width and square column footings of no greater than 3.0 m in width founded within the engineered fill or upper native soils (at or above Elev. 103.5 m) may be designed using a geotechnical reaction at Serviceability Limit States (SLS) of 150 kPa for up to 25 mm of settlement and a factored resistance at Ultimate Limit States (ULS) of 225 kPa. As the footing dimensions, depths and the soil conditions will vary across the building footprint, differential settlements of up to 20 mm should also be expected. The above bearing pressures assume a minimum strip footing width of 0.45 m and a minimum column spread footing dimension of 1.0 m. These recommendations should be reviewed by Golder once the final foundation layout is complete.

Higher bearing resistances are available for footings constructed within the dense to very dense glacial tills at the site generally within the southern portion of building.

Depending on the width of the footings, and the finalized layout of the foundations, there could be overlap/interaction of the stress bulbs of the different foundations which could result in the foundation loads being transferred deeper and into the weak deposits at depth and resulting in larger total and differential settlements. This would require further iterative analysis between Golder and the structural engineer once the detailed foundation layout is developed to confirm whether the stresses overlap.

The above bearing pressures assume a minimum strip footing width of 450 mm and a minimum column spread footing dimension of 1000 mm.

If stepped spread footings are constructed at different founding levels, the difference in elevation between individual footings should not be greater than one half the clear distance between the footings. In addition, the lower footings should be constructed first so that if it is necessary to construct the lower footings at a greater depth than anticipated, the elevations of the upper footings can be adjusted accordingly. Stepped strip footings, if required, should be constructed in accordance with the Ontario Building Code (OBC), Section 9.15.3.9.

In general, for any strip footings placed wholly or in part on engineered fill, it is recommended that the foundations be provided with nominal reinforcement, consisting of reinforcing steel at the top and bottom of the foundation walls.

However, the need for and design of any reinforcement can be determined during the design stage by the structural engineer, in consultation with Golder.

The founding materials are susceptible to disturbance by construction activity especially during wet weather and care should be taken to preserve the integrity of the materials as bearing strata. Prior to pouring concrete for the footings, the foundation excavations **must** be inspected by Golder to confirm that the footings are located in competent and undisturbed engineered fill or competent native deposits which has been cleaned of ponded water and loosened or softened material. If the concrete for the footings on the engineered fill or native soils cannot be placed immediately after excavation and inspection, it is highly recommended that a working mat of lean concrete be placed in the excavation immediately to protect the integrity of the bearing stratum. As such, additional sub excavation should be carried out to allow for the placement of the working mat. The bearing soil and fresh concrete must be protected from freezing during cold weather construction. All exterior footings and footings in unheated areas should be provided with at least 1.4 m of cover after final grading, in order to minimize the potential for damage due to frost action.

The perimeter basement walls of the lower level should be backfilled with a free draining, non-frost susceptible granular material (e.g. Granular B, Type I) carefully placed and compacted in lifts. The walls should be designed using a lateral earth pressure coefficient at rest, K_o, of 0.5 and a unit weight of backfill of 21 kN/m³. Alternatively, where site excavated material is to be reused for exterior basement wall of the lower level (i.e. where the floor slab level will be below the surrounding exterior grade) backfill, an approved geocomposite drainage system should be used directly against the wall. The upper 0.3 m of backfill should be clayey material to provide a relatively impermeable cap and should be sloped away from the house. Properly filtered perimeter drains at foundation level leading to a permanent outlet, such as a continuously pumped sump or a direct outlet to a sewer line, should be provided.

6.3.1.4 Floor Slabs on Engineered Fill

Under this option, the exposed soil subgrade will likely consist of engineered fill for the main level slab and the lower level slab. The exposed subgrade (i.e. engineered fill) should be proofrolled with a heavy roller, in conjunction with an inspection by qualified geotechnical personnel. Remedial work (e.g. sub-excavation and replacement) should be carried out on disturbed, softened, organic or deleterious zones as directed by geotechnical personnel.

The areas should then be brought to within 300 mm of the underside of the floor slab, as required, using OPSS.PROV 1010 Granular B, Type I or II material, placed in maximum 300 mm loose lifts and uniformly compacted to 100 percent of standard Proctor maximum dry density. The final lift directly beneath the floor slab should consist of a minimum of 200 mm of OPSS Granular A material, uniformly compacted to at least 100 percent of standard Proctor maximum dry density. This should provide a modulus of subgrade reaction, for a 1 foot square plate, k₁, of approximately 25 MPa/m.

Special care should be taken to ensure compaction around columns and adjacent to foundations walls. The floor slab should be structurally separate from the foundation walls and columns. Sawcut control joints should be provided at regular intervals and along column lines to minimize shrinkage cracking and to allow for differential settlement of the floor slab.

Where the floor slab is at or above the exterior final grade, perimeter drainage at the footing level is not required. However, for the lower level floor slab which will be below the surrounding grade, perimeter and underslab drainage should be provided. The type of foundation drainage should be confirmed by Golder once the finalized site grading plans are available, as part of the final design process.

6.3.2 Option 2 – Construction on Existing Fill Using Ground Improvement

Given the presence of the existing undocumented fill at the site in combination with compressible silty clay and tilllike deposits which extend to depths of up to 11.7 m below ground surface, as an alternative to supporting the building foundation and floor slabs on engineered fill, and to manage the risk of differential settlement, consideration could be given to supporting the building foundations and floor slab on the existing fill and/or silty clay deposit through ground improvement technologies (e.g. rammed aggregate piers). This would permit the use of conventional footings and slab-on-grade, without the need for replacing the fill, although engineered fill will still be required to raise to the final grade in some areas. The actual bearing support using ground improvement methods are typically provided by the supplier. It is likely that the piers would have to extend through the fill and the clayey and till-like soils and be founded within the native dense to very dense glacial tills at depth. Given the grade raise anticipated at the site within the proposed building footprint, consolidation settlement of the underlying soils is till expected and preloading still required. However, the duration of the preloading will likely be shorter with the installation of the aggregate piers.

6.4 Foundation Excavations

It is anticipated that shallow foundation excavations at the site will consist of temporary open cuts with side slopes not steeper than 1 horizontal to 1 vertical (1H:1V). However, depending on the construction procedures adopted by the contractor and weather conditions at the time of construction, some local flattening of the slopes may be required, especially within relatively soft zones of the existing fill materials. For the anticipated excavations of 1.5 m to 3.5 m below the existing ground surface for the foundations and floor slab and for placement of engineered fill, the excavations are anticipated to be generally carried through the silty clay fill and likely reach the upper native glacial till or silty clay deposit. Based on the groundwater conditions encountered in the boreholes during drilling, groundwater seepage into the shallow foundation excavations excavated through the clayey soils is expected to be minimal and can be handled, if required, by pumping from sumps located within the excavations but outside of the footing areas.

Care should be taken to direct surface water away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects. Under the Act, the existing fill and the native silty clay within the upper 3.5 m from existing ground surface may be classified as Type 3 soils. In addition, care must be taken during excavation to ensure that adequate support is provided for any existing structures and underground services located adjacent to the excavations.

6.5 Seismic Consideration

The Ontario Building Code (OBC) contains updated seismic analysis and design methodology. Seismic hazard is defined for an earthquake with a 2 percent probability of exceedance in 50 years (i.e. a return period of 2,400 years) which encompasses a larger earthquake hazard than in prior editions of the OBC. Design earthquakes are commonly defined by an earthquake magnitude, distance, and peak ground acceleration (PGA). The OBC uses the uniform hazard spectra (UHS) to define the response of the structure to the design earthquake and also considers the effects of the localized site conditions on the structural response. The OBC also uses a refined site classification system defined by the average soil/bedrock properties in the top 30 metres of the subsurface profile beneath the structure(s). There are 6 site classes designated as A to F related to decreasing ground stiffness from A for hard rock to E for soft soil and site class F for problematic soils (e.g. sites underlain by thick peat deposits and/or liquefiable soils). The site class is then used to obtain acceleration and velocity-based

site coefficients, Fa and Fv, respectively, used to modify the reference UHS to account for the effects of sitespecific soil conditions in design.

Based on the results of the investigation at this site and the proposed development plans, the proposed structure at this site is anticipated to be underlain by engineered fill, very stiff to soft silty clay underlain by dense to very dense glacial tills. Based on these conditions and using the OBC methodology, the foundations at this site may be designed using a conservative Site Class D designation.

It is possible that the site class could be improved by in situ geophysical testing. Should optimization of the site class be recommended by the structural engineer, in situ geophysical testing can be carried out at the site by Golder.

6.6 Site Servicing

6.6.1 Excavations and Groundwater Control

The proposed servicing depths and invert elevations are currently unavailable; however, it is assumed that the excavations for the proposed sewer and watermain will require excavations in the range of 1.5 m to 4.0 m below the existing ground surface.

Based on the results of this investigation, the founding soils for the pipes will be variable ranging from existing fill to native stiff silty clay or dense to very dense silty sand till. The native subsoils (i.e. underlying the shallow fill materials) are generally considered to be suitable for supporting the pipes, provided the integrity of the base can be maintained during construction. The suitability of the existing fill materials to support the pipes, where encountered at the base of the trench, should be further assessed by Golder during construction. This will require inspection during construction by qualified geotechnical personnel, to determine the suitability of any existing fills for supporting the pipes. Some difficulty may be encountered in excavating the very dense tills (near the southern portion of the site). In addition, cobbles and boulders should be anticipated to be encountered in the tills, as typical of the tills in this area.

Based on the groundwater conditions encountered in the boreholes and considering the trench excavation depths (i.e. up to about 4 m), the pipe inverts will generally be near or below the local water table. Groundwater control during excavation within the predominant glacial till and silty clay can be handled, if required, by pumping from properly constructed and filtered sumps located within the excavations. However, more significant groundwater seepage may be expected locally near or at the interface of the existing fill and native deposits, as well as the sandy silt deposit encountered in the northern portion of the site.

It should be noted that water takings in excess of 50,000 L/day are regulated by the Ministry of the Environment, Conservation and Parks (MECP). Certain takings of groundwater and stormwater for construction dewatering purposes with a combined total less than 400,000 L/day qualify for self-registration on the MECP's Environmental Activity and Sector Registry (EASR). Registry on the EASR replaces the need to obtain a PTTW for water taking and a Section 53 approval for discharge of water to the environment. A "Water Taking Plan" and a "Discharge Plan" are required by the MECP if water is taken in accordance with an EASR. In all cases, discharge under the EASR must be in accordance with a Discharge Plan (to be developed by a qualified professional). The contractor will be responsible for obtaining any required discharge approvals. A Category 3 PTTW would be required for water takings in excess of 400,000 L/day. It should be noted that a hydrogeological assessment was not within this scope of work, as such, the assessment for groundwater discharge during construction was not carried out.

It is anticipated that the trench excavations will consist of conventional temporary open cuts with side slopes not steeper than 1 horizontal to 1 vertical. However, depending upon the construction procedures adopted by the contractor, actual groundwater seepage conditions, the success of the contractor's groundwater control methods (if required) and weather conditions at the time of construction, some flattening and/or blanketing of the slopes may be required, especially where localized seepage is encountered. Care should be taken to direct surface runoff away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects. According to OHSA, the soils at the site within the proposed excavation depths would be classified as Type 2 soils.

Where side slopes of excavations are required to be steepened to limit the extent of the excavation, some form of trench support system may be required. It must be emphasized that a trench liner box provides protection for construction personnel but does not provide any lateral support for the adjacent excavation walls, underground services or existing structures. It is imperative that any underground services or existing structures adjacent to the excavations be accurately located prior to construction and adequate support provided where required. In addition, steepened excavations should be left open for as short a duration as possible and completely backfilled at the end of each working day. Care should be taken to direct surface runoff away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects.

It is imperative that underground services and existing structures adjacent to the trench excavations be accurately located prior to construction and adequate support such as an engineered shored system be provided where required.

6.6.2 Pipe Bedding and Cover

The bedding for the underground services should be compatible with the type and class of pipe, the surrounding subsoil and anticipated loading conditions and should be designed in accordance with Municipal and Regional standards. Where granular bedding is deemed acceptable, it should consist of at least 150 mm of OPSS Granular A or 19 mm crusher run limestone material. Depending upon the success of the contractor's groundwater control method and actual sewer invert depths, a thicker bedding layer, (in the order of additional up to 300 mm), may be required where pipes are to be founded in the wet/soft subgrade soils, to facilitate the pipe installations. From the springline to 300 mm above the obvert of the pipe, sand cover may be used. All bedding and cover materials should be placed in maximum 150 mm loose lifts and should be uniformly compacted to at least 100 percent of standard Proctor maximum dry density (SPMDD). If additional bedding thickness is added to improve the basal stability, the bedding should be placed in a single lift and uniformly compacted to 100 percent of SPMDD.

Clear stone bedding material should not be used in any case for pipe bedding or to stabilize the excavation base.

6.6.3 Trench Backfill

The excavated materials from the site will generally consist of clayey (cohesive) to sandy/silty (non-cohesive) subsoils. The glacial till soils and some of the silty clay native soils within the upper 4 m from the existing grade are generally near their estimated optimum water contents for compaction and may be reused for trench backfill. However, some of the existing fill and the native silty clay are generally wet of their estimated optimum water content for compaction and may require some drying prior to placement. The excavated subsoils at suitable water contents may be reused as trench backfill provided, they are free of significant amounts of topsoil, organics

or other deleterious material and are placed in minimum 300 mm loose lifts and compacted to 95 percent of SPMDD. All topsoil and organic materials should be wasted or used for landscaping purposes.

Alternatively, if placement water contents at the time of construction are too high, or if there is a shortage of suitable in-situ material, then an approved imported sandy material which meets the requirements for OPSS Select Subgrade Material (SSM) could be used. It should be placed in loose lift thicknesses as indicated above. Backfilling operations during cold weather should avoid inclusions of frozen lumps of material, snow and ice.

Normal post-construction settlement of the compacted trench backfill should be anticipated, with the majority of such settlement taking place within about 6 months following the completion of trench backfilling operations. This settlement will be reflected at the ground surface and may be compensated for, where necessary, by placing additional granular material prior to asphalt paving. Alternatively, if the asphalt binder course is placed shortly following the completion of trench backfilling operations in roadway areas, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding. If scheduling permits, the surface course asphalt should not be placed over the binder course asphalt for at least 12 months.

6.7 Pavement Design

It is understood that pavement on grade for the access routes and loading/unloading areas (heavy duty) as well as ground parking lot (light duty) are proposed as part of the proposed development.

Material		Thickness of Pavement Elements (mm)			
		Heavy Duty and Access Routes	Light Duty Parking Lots		
Apphaltia Material	HL3	40	40		
(OPSS 1150)	HL8	100 mm (Placed in two 50 mm lifts)	50		
Granular Material	Granular 'A' Base or 19 mm Crusher Run Limestone	200	150		
(OPSS 1010)	Granular 'B' Subbase	450	300		
		Prepared and A	pproved Subgrade		

The traffic data is currently unavailable; however, based on the Town of Cobourg minimum design standards and the results of our investigation, the following preliminary pavement design is recommended:

In preparation for paved areas, any remaining topsoil and deleterious materials should be stripped to expose the native, undisturbed subsoils or existing fills. Prior to placing any granular material, the exposed soil subgrade should be heavily proof-rolled in conjunction with an inspection by Golder technical staff. The suitability of the existing fill at the subgrade level, where encountered, should be assessed during construction as directed by

Golder. It should be noted that Borehole 18-18 which was proposed to be drilled along the access road near the centre of the site was eliminated from our drilling program due to presence of undetectable underground utilities. As such, careful inspection of the subgrade soils would be required, by Golder, during construction to assess the suitability of the subgrade soils in this area. Remedial work (i.e. further sub-excavation and replacement) should be carried out on any disturbed, softened or poorly performing areas, as directed by Golder.

The granular subbase and base materials should be uniformly compacted to 100 percent of their standard Proctor maximum dry densities. The asphalt materials should be compacted to between 92 and 96.5 percent of their Marshall Maximum Relative Densities, as measured in the field using a nuclear density gauge.

It should be noted that adequate surface and subsurface drainage is critical to the longevity of the pavements. The drainage system could consist of a system of catch basins connected to sub-drains draining to a permanent storm water outlet. In this regard, the asphalt surface should be graded to drain towards the catch basins and the subgrade should be carefully proof-rolled to a smooth surface and sloped towards the catch-basins to prevent ponding or entrapment of water in the subbase which would lead to weakened sections and general poor performance. Short (5 to 6 m long) perforated stubdrains should be provided at internal catch basin locations on all four sides of the catch basins.

Consideration should also be given to providing continuous subdrains along the sides of access routes and perimeter edges of the parking areas to promote drainage of the granular materials, provided that the curbs direct overland flow.

Positive drainage should be provided to the subgrade. Stub drains and subdrains should be a minimum of 300 mm below the bottom of the granular subbase and connected to the catch basins. The drains should consist of 100 mm or 150 mm diameter geotextile wrapped perforated pipe, surrounded on all sides by at least 150 mm of clean free draining material such as concrete sand. The pipes should be placed such that the top of the sand filter is at subgrade level in contact with the sub-base material.

It should be noted that in some cases, even though the compaction requirements have been met, the subgrade strength may not be adequate to support heavy construction loading especially during wet weather or where backfill materials wet of optimum have been placed. In this regard, the design Granular B subbase thickness may not be sufficient for a construction haul road and additional Granular B (in the order of 300 mm) may be required. In any event, the subgrade should be proofrolled and inspected by the geotechnical engineer prior to placing the Granular B subbase and additional granular placed, as required, consistent with the prevailing weather conditions and anticipated use by construction traffic.

Where new pavement abuts existing pavement (i.e. at the entrance and drive-through), transvers step joints should be provided at the tie-ins by 40 mm in depth and 2 m in width. The existing asphalt edges should be provided with a proper saw cut edge prior to keying in the new asphalt. Any undermining or broken edges resulting from the construction activities should be removed by the saw cut.

6.8 Excess Soil Disposal

A total of eight soil samples were submitted to AGAT for analytical testing, none of which had exceedances of the MOE Table 1 Standards, as summarized in Section 5.9.1. Based on the analytical results, the soil appears to be environmentally suitable for reuse on site.

Any excess material generated during construction activities that is of similar environmental quality to the tested samples noted in Section 5.9.1, may be reused as backfill provided:

- There is no evidence of potential environmental impact, including: staining, and discolouration or odours that are potentially associated with petroleum hydrocarbons or other contaminants;
- It is free of other wastes, which are prohibited in any amount, including: putrescible material (e.g., organic materials, wood), concrete, cement fines, rebar, plastic, scrap metal, asphalt, shingles, rubbish, glass, and garbage; and
- It is geotechnically suitable and approved for use as a backfill material by a geotechnical engineer.

Alternatively, any excess material may be removed off-site to a receiving site, such as a property appropriately permitted in accordance with the applicable bylaw of the local municipality or a waste management facility permitted in accordance with Part V of the Environmental Protection Act. It is advisable to review a potential receiving site's acceptable fill protocol to determine what documentation must be submitted to facilitate acceptance by the receiving site.

Furthermore, consideration could be given to re-testing the soil once excavated and stockpiled to better characterize it before its re-use. Prior to the removal of the excavated material from the property, available analytical data pertaining to this material should be forwarded to the potential receiver for review. Written authorization, indicating that this data was received and reviewed, and that the receiver accepts the excavated materials, should be provided to the site representative by the potential receiver. Additionally, movement of soil to a site that has a Record of Site Condition on file with the MOE may require that specific testing protocols are followed and that the materials must satisfy the applicable standards. If excess soil fill and/or native materials vary from the samples tested by Golder, additional testing is recommended to determine suitability for disposal.

6.9 Corrosivity Test Results

Two soil samples were collected and submitted to AGAT for analysis of parameters used to assess corrosion potential to steel and degradation to concrete, including analysis of pH value, resistivity, sulphate content, and chloride content. The results of analytical testing on soil samples from the site are provided in Appendix B. A summary of the results of the corrosivity testing is presented in the following table:

Borehole	Sample	Sample	Parameter Concentrations				
		Depth (mbgs)	Chloride (µg/g)	Sulphate (µg/g)	Conductivity (µmho/cm)	Resistivity (ohm-cm)	рН
18-3	4	2.3 – 2.7	880	14	3,400	300	7.82
18-13	3	1.5 – 2.0	3,000	170	10,000	100	7.39

The corrosivity results were compared to the American Water Works Association (AWWA) C-105 (2005) Standard, "Polyethylene Encasement for Ductile-Iron Pipe Systems". Based on the results, the corrosivity potential is considered to be low at the locations of Boreholes 18-3 and 18-13 and buried steel elements installed at the site will therefore not require specialized protection from corrosion. The analytical results at the locations tested indicate that the potential for sulphate attack is negligible, and that concrete made with Type GU Portland cement should be acceptable for below grade concrete elements.

These recommendations are provided as guidance only; the civil engineer should take the results of the laboratory testing, the potential for corrosion and the ultimate selection of materials into consideration.

7.0 MONITORING AND TESTING

The geotechnical aspects of the final design drawings and specifications should be reviewed by this office prior to tendering and construction, to confirm that the intent of this report has been met. During construction, full-time engineered fill monitoring, consolidation settlement monitoring, sufficient foundation inspections, subgrade inspections and in-situ materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes and to monitor conformance to the pertinent project specifications.

8.0 CLOSURE

We trust that this report provides sufficient information to facilitate the design of this project. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact the undersigned

Signature Page

Golder Associates Ltd.

Alan Mohammad, P.Eng. Geotechnical Engineer

MJB/AM/AJH/rl;ljv

Sarah Poot, P.Eng., Associate Senior Geotechnical Engineer

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/34857g/deliverables/1- geo inv report/final/18111688 rep 2019'08'09 geotech invest gpl rev_1.docx

BOREHOLE LOCATION PLAN

18111688

CONSULTANT

6	GOLDER	
	CONTROL	-

0001

YYYY-MM-DD		2019-01-07		ŀ
DESIGNED		SO		Ē
PREPARED		SO/JT		Ē
REVIEWED		AM		Ē
APPROVED		SEMP		Ē
	REV.		FIGURE	F
	0.0		2	Ē

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)	
•	18-9	4	2.3 - 2.7	
•	18-5	6	4.6 - 5.0	
◆	18-1	7	6.1 - 6.6	
	18-7	TW	7.5 - 7.9	
∇	18-6	TW	5.5 - 5.9	

Project Number: 18111688

Checked By: ____AM__

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)
•	18-3	TW	10.4 - 10.9
•	18-1	TW	7.0 - 7.5

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)	
•	18-7	12	12.2 - 12.7	
•	16-5	3	1.5 - 2.0	
◆	18-13	4	2.3 - 2.7	
A	18-2	9	10.7 - 11.1	

Project Number: 18111688

Checked By: <u>AM</u>

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{(30)^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name
		of m)	Gravels with	Poorly Graded		<4		≤1 or ≧	≥3		GP	GRAVEL
(ss	(mm g	'ELS mass action i 4.75 m	≤12% fines (bv mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL
by mas	SOILS	GRAV 0% by arse fra	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL
ANIC ≤30%	INED ((>5 co large	>12% fines (by mass)	Above A Line			n/a				GC	CLAYEY GRAVEL
NORG	E-GRA s is lar	of s	Sands with	Poorly Graded		<6		≤1 or 2	≥3	≤30%	SP	SAND
Janic O	:OARS by mas	DS mass o action is 4.75 n	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND
(Org	C >50% I	SAN 0% by arse fra er than	Sands with	Below A Line			n/a				SM	SILTY SAND
	÷	(≥5 cos small	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND
Organic			(by mass)			F	ield Indica	ators				
or Inorganic	Group	Туре	of Soil	Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name
				Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT
(ss	75 mm	and I	city city low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT
by ma	OILS Ian 0.0	SILTS	Plasti In Plasti In the		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT
∋ANIC t ≤30%	NED Si aller th	-Place	9 9 7 9 9 7	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT
INOR (-GRAII s is sm	ON)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT
ganic (FINE by mas		e on lart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY
Ō	≥50% I	CLAYS	elow)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	30%	CI	SILTY CLAY
	Ŭ		Plast	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY
≻ <mark>O</mark> S	nic >30% ss)	Peat and mix	mineral soil tures							30% to 75%		SILTY PEAT, SANDY PEAT
HIGHI ORGAI SOIL	(Orga Content : by ma	Predomir may con	nantly peat, Itain some ill fibrous or							75% to	PT	PEAT
40	0	amorph	ious peat					Dual Sum	hel Adus	100%	two overholo	on arotad by
-	Low	Plasticity		Medium Plasticity	≺ Hig	th Plasticity		a hyphen,	for example,	GP-GM, S	SW-SC and CL	-ML.
					CLAY	PHOT THUL		For non-co	phesive soils,	the dual s	mbols must b	e used when
30 -					СН			the soil h	as between I material b	5% and [•]	12% fines (i.e lean" and "di	e. to identify rtv" sand or
								gravel.				
idex (PI				CI	ORGANIC S	BILT OH		For cohes	ive soils, the	dual symb	ol must be us	ed when the
20 - 20 -				of the plasticity chart (see Plasticity Chart at left).).					
2	SILTY CLAY											
10		Borderline Symbol — A borderline symbol is two symbols separated by a slash for example, CL/CL GM/SM, CL/ML				two symbols SM, CL/ML.						
7	7 CLAYEY SILT ML ORGANIC SILT OL A borderline symbol should be used to indicate that the so				that the soil							
4	has been identified as having properties that are on the					are on the						
0	SILT ML (See Note 1)	25.5 30	40 5	0 60	70	80	transition t	between simil av be used to	ar materia	is. In addition, range of simi	a porderline lar soil types
	Liquid Limit (LL) within a stratum.											

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_t), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH-Sampler advanced by hydraulic pressure
- PM-Sampler advanced by manual pressure
- wн· Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

NON-COHESIVE (COHESIONLESS) SOILS

Compactness	2
-------------	---

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 - 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects.

2. Definition of compactness terms are based on SPT-'N' ranges as provided in Terzaghi, Peck and Mesri (1996) and correspond to typical average N_{60} values. Many factors affect the recorded SPT-'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), groundwater conditions, and grainsize. As such, the recorded SPT-N' value(s) should be considered only an approximate guide to the compactness term. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction. Field Meisture Conditi

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
GS	Grab Sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
то	Thin-walled, open – note size
TP	Thin-walled, piston – note size
WS	Wash sample

SOIL TESTS

1.

w	water content
PL, wp	plastic limit
LL, wL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test1
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

COHESIVE SOILS

Consistency				
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)		
Very Soft	<12	0 to 2		
Soft	12 to 25	2 to 4		
Firm	25 to 50	4 to 8		
Stiff	50 to 100	8 to 15		
Very Stiff	100 to 200	15 to 30		
Hard	>200	>30		

SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure 1. effects; approximate only. SPT 'N' values should be considered ONLY an approximate guide to 2

SPT consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content				
Term	Description			
w < PL	Material is estimated to be drier than the Plastic Limit.			
w ~ PL	Material is estimated to be close to the Plastic Limit.			
w > PL	Material is estimated to be wetter than the Plastic Limit.			

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
π	3.1416	w _i or LL	liquid limit
	natural logarithm of x	w _p or PL	plastic limit plasticity index = $(w_1 - w_2)$
g	acceleration due to gravity	Ws	shrinkage limit
ť	time	IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin In	$density index = (e_{max} = e) / (e_{max} = e_{max})$
II.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
3	linear strain	q	rate of flow
εv		v	velocity of now
ц D	Poisson's ratio	k	hydraulic gradient
σ	total stress	K	(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	i	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	-	
σ1, σ2, σ3	principal stress (major, intermediate,		
	minor)	(c)	Consolidation (one-dimensional)
_	maan stross or ostabodral stross	Cc	(normally consolidated range)
Goct	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress	01	(over-consolidated range)
ů	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
К	bulk modulus of compressibility	Cv	direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U,	degree of consolidation
(2)	Index Properties		pre-consolidation stress
(a)	bulk density (bulk unit weight)*	OCK	OVEI-CONSCIDUCION TALLO = O p / O vo
ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρ _s (γ _s)	density (unit weight) of solid particles	ę′	effective angle of internal friction
γ'	unit weight of submerged soil	0	angle of interface friction
D-	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan o
DR	neutricles $(D_{\rm p} - \alpha_{\rm s} / \alpha_{\rm s})$ (formerly $G_{\rm s}$)	C' Cu Su	undrained shear strength $(\phi - 0)$ analysis)
е	void ratio	D	mean total stress $(\sigma_1 + \sigma_2)/2$
n	porosity	p′	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		qu	compressive strength (σ_1 - σ_3)
		St	sensitivity
* Densi	ty symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
where $\gamma = \rho g$ (i.e. mass density multiplied by 2 shear strength = (compressive strength)/2 acceleration due to gravity)			

RECORD OF BOREHOLE: 16-1

LOCATION: See Figure 2

BORING DATE: May 19, 2016

SHEET 1 OF 1

DRILL RIG: CME 55 Track Mount Auger

DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

Substrate Substrate <t< th=""><th>1-</th><th>Ţ</th><th></th><th></th><th></th><th>-</th><th></th><th>F2</th><th></th><th></th><th>1</th><th></th></t<>	1-	Ţ				-		F 2			1	
Bit of the server is and			SOIL PROFILE	Ŀ		SA	MPL	LES	RESISTANCE, BLOWS/0.3m	k, cm/s		PIEZOMETER
B En En M Z S Decision WP Decision Very S Decision Very S Decision Very S Decision Very Decision Very S Decision Very Decision<	ME I KE		DESCRIPTION	ATA PLO	ELEV. DEPTH	UMBER	TYPE	WS/0.3rt	20 40 60 80 HEAR STRENGTH nat V. + Q Cu, kPa rem V. ⊕ U	- ● WATER CONTENT PERCENT	ADDITION AB. TEST	OR STANDPIPE INSTALLATION
Bit TORON Construction Construction <th>BOF</th> <th>ŝ</th> <th></th> <th>STR.</th> <th>(m)</th> <th>ź</th> <th></th> <th>BLC</th> <th>20 40 60 80</th> <th>10 20 30 40</th> <th><u> </u></th> <th>GRAIN SIZE DISTRIBUTION (%) 50mm Dia Monitorin</th>	BOF	ŝ		STR.	(m)	ź		BLC	20 40 60 80	10 20 30 40	<u> </u>	GRAIN SIZE DISTRIBUTION (%) 50mm Dia Monitorin
Image: Status (Status (0		GROUND SURFACE FILL - TOPSOIL		104.43		-	-				GR'SA' SIª CL'IOIIIOIII Well
Image: Start of the granted, some of the second constant set into the second constant second constant set into the second constant second			FILL - (CL) SILTY CLAY, some sand; dark brown, organic staining, rootets; cohesive, w <pl, firm<="" td=""><td></td><td>0.13</td><td>1</td><td>SS</td><td>5</td><td></td><td>0</td><td></td><td> January 4, 2019</td></pl,>		0.13	1	SS	5		0		 January 4, 2019
Unit EXAM Learning SEXTY CLAVE learning were of a andy sill, cohesine, were using the cohesine, were usin the cohesine, were usin the cohesine, were using t	1	-	(ML) sandy SILT (fine grained), some clay, brown, oxidation staining; non-cohesive, moist, compact		0.61	2	ss	14		0	мн	
Image: Second	2	-	(CL-ML) sandy SILTY CLAY to sandy CLAYEY SILT; brown, oxidation staining, zones of sandy silt; cohesive, w>PL, very stiff		• 103.06 1.37	3	ss	19		0		
1 and years 5 58 11 6 58 9 6 58 9 6 58 9 7 58 11 97.89 9 - 97.89 1 - 97.89 1 - 97.89 5 11 1 1 1 97.89 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>uger 7</td><td>SI</td><td>(CL-CI) SILTY CLAY, trace to some sand; brown to grey at 3.3 m; cohesive, w~PL to w>PL, stiff</td><td></td><td>102.30 2.13</td><td>4</td><td>ss</td><td>14</td><td></td><td>φ</td><td></td><td>Bentonite</td></td<>	uger 7	SI	(CL-CI) SILTY CLAY, trace to some sand; brown to grey at 3.3 m; cohesive, w~PL to w>PL, stiff		102.30 2.13	4	ss	14		φ		Bentonite
so the second s	α ted Power A	/ Stem Aug∈										
3 3 - - - - - - Sand - <td>IE-55 Track-Moun</td> <td>0 mm Dia. Hollov</td> <td></td> <td></td> <td></td> <td>5</td> <td>SS</td> <td>11</td> <td></td> <td>0</td> <td></td> <td></td>	IE-55 Track-Moun	0 mm Dia. Hollov				5	SS	11		0		
Image: Source of the second surface, May 19, 2016. Image: Source of the second surface, May 31,	4 ²⁰	50					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				мы	Sand
END OF BOREHOLE 0	5					0	33	9				Screen
Image: Problem of the second secon	6									+		U,VI,VI,VI,VI
END OF BOREHOLE 6.55 NOTES: 1. Water encountered during drilling at a depth of 5.5 m below ground surface, May 19, 2016. 2. Water level in monitoring well at a depth of 4.72 m below ground surface, May 27, 2016. 1. Water level in monitoring well at a depth of 4.87 m below ground surface, May 31, 2016. 4. Water level in monitoring well at a depth of 4.48 m below ground surface, June 3, 2016. 1. Here in monitoring well at a depth of 4.28 m below ground surface, May 31, 2016.					97.88	7	SS	11		0		
NOTES: 1. Water encountered during drilling at a depth of 5.5 m below ground surface, May 19, 2016. 2. Water level in monitoring well at a depth of 4.72 m below ground surface, May 27, 2016. 3. Water level in monitoring well at a depth of 4.87 m below ground surface, May 31, 2016. 4. Water level in monitoring well at a depth of 4.87 m below ground surface, May 31, 2016. June 3, 2016.			END OF BOREHOLE		6.55							
2. Water level in monitoring well at a depth of 4.72 m below ground surface, May 27, 2016. 3. Water level in monitoring well at a depth of 4.87 m below ground surface, May 31, 2016. 4. Water level in monitoring well at a depth of 4.88 m below ground surface, June 3, 2016.	7		NOTES: 1. Water encountered during drilling at a depth of 5.5 m below ground surface, May 19, 2016.									
3. Water level in monitoring well at a depth of 4.87 m below ground surface, May 31, 2016. 4. Water level in monitoring well at a depth of 4.48 m below ground surface, June 3, 2016.	8		2. Water level in monitoring well at a depth of 4.72 m below ground surface, May 27, 2016.									
4. Water level in monitoring well at a depth of 4.48 m below ground surface, June 3, 2016.			3. Water level in monitoring well at a depth of 4.87 m below ground surface, May 31, 2016.									
	9		4. Water level in monitoring well at a depth of 4.48 m below ground surface, June 3, 2016.									
	10											
EPTH SCALE LOGGED: EW/MB	DEPTH	-1 S(CALE		1	1	1		GOLDER		<u>ا</u>	OGGED: EW/MB

RECORD OF BOREHOLE: 16-2

LOCATION: See Figure 2

BORING DATE: May 19, 2016

SHEET 1 OF 1

DRILL RIG: CME 55 Track Mount Auger

DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

L METRES BORING METHOE	OF SUIL PROFILE U DESCRIPTION U GROUND SURFACE FILL - TOPSOIL mixed with CLAYEY SILT	STRATA PLOT	ELEV. DEPTH (m)	JMBER 8	wPL	/0.3m	RESISTANCE, BLOWS/0.3m 20 40 60	80	k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 1		PIEZOMETER
L METRE BORING ME	Bit DESCRIPTION GROUND SURFACE FILL - TOPSOIL mixed with CLAYEY SILT SILT	STRATA PLO	ELEV. DEPTH (m)	JMBER	щ	/0.3n	20 40 60	80	10~ 10~ 10" 1		OR
0 1	Z DESCRIPTION GROUND SURFACE FILL - TOPSOIL mixed with CLAYEY SILT SILT	STRATA	DEPTH (m)	JME	n I	1 10	SUEAD STDENOTU motil	· · ·	WATED CONTENT DEDOC		STANDPIPE
0	GROUND SURFACE FILL - TOPSOIL mixed with CLAYEY SILT	STF	(m)	≓	Σ	ows	Cu, kPa rem V. 🕀	0-0-0			
1	GROUND SURFACE FILL - TOPSOIL mixed with CLAYEY SILT			2		BL	20 40 60	80	10 20 30 4	io	DISTRIBUTION (%)
1	FILL - TOPSOIL mixed with CLAYEY	X X X ***	105.98								SUMM Uja Monito Well
1			0.00	1	SS	8			0		
	FILL - (CL) SILTY CLAY, some sand, trace to some gravel; brown; cohesive, w~PL, stiff		0.69	2	SS	8			0		 January 4, 2019 Bentonite
	FILL - (CL-ML) CLAYEY SILT and SAND; brown to dark brown, organic inclusions; cohesive, w>PL, stiff		<u>104.61</u> 1.37	3	SS	9			0		
2	(ML) sandy SILT (fine grained); brown, oxidation stained; non-cohesive, wet, compact		103.85 2.13	4	SS	11			0		Sand
unted Power Auge	(CL-CI) SILTY CLAY, trace to some (CL-CI) SILTY CLAY, trace to some sand; brown to grey, oxidation staining to 15 1 4.0 m; cohesive, w~PL to w>PL, stiff to		<u>103.08</u> 2.90								Screen
CME-55 Track-Mo	2000 2000 2000 2000 2000 2000 2000 200			5	55	23					Sand
4											Bentonite
5				6	SS	13			0		
											Cuttings
6			99.43	7	SS	20			c		
	END OF BOREHOLE		6.55								
7	NOTES: 1. Water encountered during drilling at a depth of 2.3 m below ground surface, May 19, 2016.										
8	2. Water level in monitoring well at a depth of 1.78 m below ground surface, May 27, 2016.										
	 Water level in monitoring well at a depth of 1.77 m below ground surface, May 31, 2016. Water level in monitoring well at a 										
9	depth of 1.83 m below ground surface, June 3, 2016.										
10											

RECORD OF BOREHOLE: 16-3

LOCATION: See Figure 2

BORING DATE: May 19, 2016

DRILL RIG: CME 55 Track Mount Auger

DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

	ДŎ		SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN RESISTANCE,	IETRATIC BLOWS/)N 0.3m	$\overline{\boldsymbol{\lambda}}$	HYDR	AULIC C k, cm/s	ONDUC	TIVITY,	T	ں۔ اوب	DIEZOMETER
METRES	NG METH		DESCRIPTION	TA PLOT	ELEV.	MBER	ΥΡΕ	VS/0.3m	20 4 SHEAR STREM	40 6 NGTH n	0 ε at V. +	30 Q - •	1 W	0 ⁻⁶ 1 I ATER C	0 ⁻⁵ 1 L ONTEN	0 ⁻⁴	10 ⁻³	DITIONA 3. TESTIN	OR STANDPIPE INSTALLATION
-	BORI			STRA	DEPTH (m)	NUN	ŕ	BLOV	20 4	n 10 6	em v. ⊕ ∩ s	30	W	p 		30	WI 40	LAB	GRAIN SIZE DISTRIBUTION (%)
		╡	GROUND SURFACE		105.88														GR SA SI CL
0			FILL - TOPSOIL mixed with sandy SILT FILL - (CL) SILTY CLAY; grey and brown, oxidation staining, organic inclusions; cohesive w2PI frm		0.00 105.27 0.61	1	SS	9						0					
1			(ML) sandy SILT; brown, oxidation staining; non-cohesive, moist, compact		104.23 1.65	3A 3B	SS	6						0	þ				
3			(CL) SILTY CLAY; brown; cohesive, w>PL, stiff (ML) SILT and SAND; brown; non-cohesive, wet, compact (CL) SILTY CLAY, trace sand; grey, oxidation staining; cohesive, w>PL to		103.59 2.29 2.44 2.59	4A 4B 4C	ss	11							000				
4	uger	s	w~PL, stiff to very stiff (CL-CI) SILTY CLAY. trace sand: grev.		<u>101.77</u> 4.11	5	SS	16							0				
5	CME-55 Track-Mounted Power Au	150 mm Dia. Solid Stem Augers	varved 55 mm; w>PL, cohesive, stiff to firm			6	SS	12						(Þ				
7						7	SS	8	Ð	+		+			0				
8			- Zones of sand and gravel at 7.8 m		97.50	8	SS	6						0					
9			(CL) sandy SILTY CLAY, trace gravel; grey (TILL-LIKE); cohesive, w>PL, stiff		8.38 96.28	9	SS	9	Ð	+		+	0						
ľ		1	END OF BOREHOLE	POF Y Y	9.60														
- 1		_L	<u>NOTE:</u>	-	+	┣-	L _	-		<u></u>		<u> </u>	+	<u> </u>	├	· ·	+		

SHEET 1 OF 2

P L	OCATI	ON: See Figure 2		1 \L		J					••	10-0						ONELIZUFZ
							BO DR	RING DATE: ILL RIG: CME	May 19, : 55 Track	2016 (Mount <i>i</i>	Auger					F	IAMME	DATUM: Geodetic ER TYPE: AUTOMATIC
CALE	ETHOD	SOIL PROFILE	Ь		SAN	MPLE	ES E	DYNAMIC PE RESISTANCI 20	NETRATIO	ON /0.3m 60 8	, , ,	HYDRA	ULIC CC k, cm/s ⁶ 10	ONDUCT	ΓΙVITY, Ω ⁻⁴ 10).ª [NAL	PIEZOMETER
DEPTH S METR	BORING M	DESCRIPTION	STRATA PL	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3	SHEAR STRI Cu, kPa 20	INGTH I	nat V. + rem V. ⊕	Q - ● U - O	WA Wp 10				NT NI 0	ADDITIC LAB. TES	STANDPIPE INSTALLATION GRAIN SIZE DISTRIBUTION (%)
- 10	,	CONTINUED FROM PREVIOUS PAGE																GR SA SI CL
- - - - - - - - - - - - - - - - - - -	1	1. Water encountered during drilling at a depth of 4.6 m below ground surface, May 19, 2016.																
- - - 12 - - -	2																	
5.GDT 3/28/19	3																	
832.GPJ GAL-MIS	4																	
2_DATA/GINT/1655	5																	
E BURNHAM RDS/C	ô																	
	7																	
HUMBERLAND/COB(В																	
	9																	
005 S:/CLIENTS/C	D																	
GTA-BHS (1 D	EPTH : 50	SCALE						G		E	2						L(CH	DGGED: EW/MB ECKED: AH

RECORD OF BOREHOLE: 16-4

LOCATION: See Figure 2

BORING DATE: May 19, 2016

DATUM: Geodetic

DRILL RIG: CME 55 Track Mount Auger

HAMMER TYPE: AUTOMATIC

	8	3	SOIL PROFILE			SA	MPL	ES				HYDRAULIC C	ONDUCT	IVITY,	T	
METRES	SORING METH)	DESCRIPTION	TRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	LOWS/0.3m	20 40 I SHEAR STRENGTH Cu, kPa	60 80 	· - ● - 0	10 ⁻⁶ 1 WATER C	0 ⁵ 10 L 1 ONTENT 	⁻⁴ 10 ⁻³ PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION GRAIN SIZE
_	ш	'		Ś				-	20 40	60 80		10 2	0 30) 40		DISTRIBUTION (%)
0 -			FILL - TOPSOIL mixed with sandy SILT FILL - (CL) SILTY CLAY, trace sand, trace gravel; brown, oxidation staining,		106.92 0.00 106.47	1	ss	13				0				uartan baaterezorree
1			organic inclusions at 1.7 m; cohesive, w <pl to="" w="">PL, stiff to firm</pl>		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	2	SS	10				0				 January 4, 2019
2		-	- Organic inclusions at a depth of 1.7 m below ground surface		104.63	3	SS	6					0			Bentonite
	ower Auger	Augers	FILL - (CL-ML) SIL IY CLAY to CLAYEY SILT; brown, oxidation staining, organic and peat pockets; cohesive w>PL, stiff (CL-CI) SILTY CLAY, trace sand, trace gravel: brown to grey oxidation staining:		2.29 104.18 2.74	4	SS	14				c				
3	CME-55 Track-Mounted Po	150 mm Dia. Solid Stem	cohesive, w>PL, stiff to very stiff			5	SS	13					0			
5						6	SS	24				H	•	-	МА	Sand
6		-	(CL) Sandy SILTY CLAY, trace to some gravel; grey (TILL); w <pl, stiff<br="" very="">END OF BOREHOLE NOTES:</pl,>		100.60 6.32 100.37 6.55	7A 7B	ss	23				0				
1			 Water level in borehole at a depth of 3.4 m below ground surface upon completion of drilling, May 19, 2016. Water level in piezometer at a depth of Combined from the provided from the													
8			 3. Water level in piezometer at a depth of 2.50 m below ground surface, June 3, 2016. 													
9																
10																
		-150	CALE	1	1	1	I		GOL	DER		<u> </u>	<u> </u>	I	L	OGGED: EW/MB

SHEET 1 OF 1

RECORD OF BOREHOLE: 16-5

LOCATION: See Figure 2

BORING DATE: May 19, 2016

DRILL RIG: CME 55 Track Mount Auger

SHEET 1 OF 1 DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

ш		n	SOIL PROFILE			SA	MPL	ES				ON /0.3m	}	HYDR/	AULIC C	ONDUC	TIVITY,	Т	. (1)	
SCALI		AE IH		-OT		r		Зm	20	4	0 0	, 9.5111 60 8	30	1	0 ⁻⁶ 1	0 ⁻⁵ 1	0-4	10⁻³ ⊥	STING	PIEZOMETER OR
METR 0		NG N	DESCRIPTION	TA PL	ELEV.	MBEF	ΥPΕ	VS/0.:	SHEAR S	STREN	GTH	natV. +	Q- ●	w	ATER C	ONTENT	PERCE	INT	DITIO	STANDPIPE INSTALLATION
DEF		BORI		TRA	DEPTH (m)	NN	ŕ	BLOV	Cu, KPa		1	rem v. 🕁	0-0	Wp		-0 ^W		WI	₽ ₽	GRAIN SIZE
	+	_	GROUND SURFACE	S					20	4	0 (60 8	30	1	0 2	<u>:0 3</u>	30	40		GR SA SL CL
— 0 -			FILL - TOPSOIL mixed with SANDY SILT	***	0.00															
					3	1	ss	7							0					
					107.18															
-			FILL - (CL) Sandy SILTY CLAY, trace		0.61		1													
- 1			inclusions; w>PL, firm			2A	SS	35							c					
					106.57	2B	1							0						
			(SM) gravelly SILTY SAND, some clay; brown, becoming grey below 5.5 m,		1.22															
			oxidation staining, containing cobbles and boulders (TILL); non-cohesive,				1													
			dense to very dense			3	SS	53						0						
- 2					ł		1													
								50/												
	Auger	ers				4	SS	0.08												
	ower	n Aug																		
- 3	nted F	d Sten						50/												
	-Mou	i. Solic				5	SS	0.1						0						
	5 Trac	nn Dia																		
	ME-5	150 n																		
	0																			
- 4																				
						-6	ss	50/ 0.03						0						
- 5																				
- 6																				
					• 101.57 6.22	7	SS	50/ 0.13						0						
			NOTE																	
			1. Developed and developed																	
			completion of drilling, May 19, 2016.																	
. /																				
- 8																				
- 9																				
_ 10																				
- 10																				
	-			I	1	1	<u> </u>					1	1			1	<u> </u>	1	1	L
D	EPT	ΉS	CALE							G O	LD	E	R						L	OGGED: EW/MB
1	: 50									+									CH	ECKED: AH

PROJECT:	1655832	
	o ==:	

RECORD OF BOREHOLE: 16-6

LOCATION: See Figure 2

BORING DATE: May 19, 2016

SHEET 1 OF 1

DRILL RIG: CME 55 Track Mount Auger

DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

ц		ЦОР	SOIL PROFILE			SAI	MPL	ES	DYNAMIC PEN RESISTANCE,	ETRATI BLOWS	ON /0.3m	$\sum_{i=1}^{n}$	HYDR	AULIC CO k, cm/s	ONDUCT	TVITY,	T	4G L	PIEZOMETER
L SCA	ETRES	G MET		A PLOT	ELEV.	BER	Ц	S/0.3m	20 4 SHEAR STREM		60 8 L	30 Q - •	1 W	0 ⁻⁶ 10) ⁵ 1(0 ⁻³ ⊥ ⊥ NT	TESTI	OR STANDPIPE
DEPT	M	BORIN		TRATA	DEPTH (m)	NUME	Ţ	BLOWS	Cu, kPa	ioni	rem V. 🕀	Ũ-Ō	W				WI	ADD LAB.	INSTALLATION GRAIN SIZE
			GROUND SURFACE	ەن ا	108.36		_	ш	20 4	0	<u>60 8</u>	30	1	0 2	0 3	0 4	0		GR SA SI CL
Ē	0		FILL - TOPSOIL mixed with sandy SILT		0.00														
Ē					107 75	1	SS	14						0					
-			(CL) SILTY CLAY; brown, oxidation staining; cohesive, w~PL, stiff		0.61														
F	1					2	SS	13						0					- - -
Ē					-														-
Ē					-	2	~~	12											
Ē	2					3	33	13											- -
Ē					106.07														
Ē		r Auger	gravel; brown, containing cobbles and boulders (TILL); non-cohesive, moist,		2.29	4	ss	39					0						-
- - -		ed Powe	dense to very dense																
3/28/1	3	-Mounte	. Solid S		-	5	SS	50/ 0.10					0						-
115.601		55 Trac	mm Dia		-														
AL-MIS		CME	150																-
5 	4																		
832.G																			
IN1655					-	6	SS	50/ 0.10					0						
A/GIN	5																		-
																			-
	6																		
	Ĭ		END OF BOREHOLE		102.16 6.20	7	SS	50/ 0.10					0						
			NOTE:																
			1. Borehole open and dry upon completion of drilling, May 19, 2016.																
	7																		-
	8																		-
H H																			-
z 5	9																		
2 S:\C	10																		-
HS 00	DF	ртн	H SCALE								. – .	<u> </u>	•					·	OGGED: FW/MR
GTA-E	1:5	50							S GO	, L L	ι	ĸ						СН	ECKED: AH

RECORD OF BOREHOLE: 18-1

LOCATION: N 4872807.32; E 724806.53

BORING DATE: December 18, 2018

SHEET 1 OF 2

щ			SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ە_ ا	
I SCAL TRES	METH			PLOT		ER		0.3m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³		
DEPTH	RING		DESCRIPTION	RATA F	DEPTH	NUMBE	түре	OWS/(SHEAR STRENGTH Cu, kPanat V. + Q - ● rem V. ⊕ U - O		ADDIT AB. TI	INSTALLATION
	E C	3		STF	(m)	2		BL	20 40 60 80	10 20 30 40		
- 0		_	GROUND SURFACE		105.27						_	
-		╞			105.02	1A	99	12		φ		
_			oxidation staining, organic inclusions;		0.25	1B	55	12		0		
-			conesive, w~PL, IIIII to suit									
- - - 1						2	SS	10				_
- '						_						
-												-
-												
						3	SS	6				
- 2					103.14							-
			sand; trace gravel; brown to grey,		2.13							
			w>PL, stiff to very stiff			4	SS	15		0		
3												-
						5	SS	24				
		s										:
	ME55	Auge										
4	unt CI	I Stem										
	ck Mo	1 Solic	- Oxidation staining to 4.0 m									
	Tra	50 mn										
		-										
_						6	SS	14		0		
5												-
												-
			Personing grou at 5.6 m									
			- Deconning grey at 5.0 m									
6												-
						7	SS	9			мн	
7		╞			98.27							-
			SAND, some gravel to gravelly; grey		1.00							:
			(TE-EITE, CONSIVE, W-TE, IIIII									
												:
R					07.40	8	SS	6			MH C	_
0	\vdash	+	END OF BOREHOLE		97.19 8.08							
			NOTES:									:
			1. Water encountered during drilling at a									
			2. Perchale environment 18, 2018									
9			∠. Borenole caved to a depth of 5.5 m upon completion of drilling, December									-
			10, 2018									
			3. vvater measured in open portion of borehole at a depth of 3.2 m upon									
			completion of drilling, December 18, 2018									
10	┝ ·	-						-	+	┟──┝─┼──┝─┼─	-	
			CONTINUED NEXT PAGE									
DE	PTH	H S	CALE								L	OGGED: YS
1:	50								BOLDER		СН	ECKED: MJB

RECORD OF BOREHOLE: 18-1

LOCATION: N 4872807.32; E 724806.53

BORING DATE: December 18, 2018

SHEET 2 OF 2

OMETER OR
ALLATION
-
-
-
-
-
-
-
-
-
S

RECORD OF BOREHOLE: 18-2

LOCATION: N 4872819.36; E 724832.83

BORING DATE: December 18, 2018

SHEET 1 OF 2

													1						,	
	Ę	L	SOIL PROFILE			SA	MPL	ES	DYNAMIC PE RESISTANCE	NETRA E, BLOV	VS/0.3m),	HYDR.	AULIC k, cm	CONDL /s	JCTIVI	ΙY,	Т	وږ	
RES	VET F			LOT		ĸ		.3m	20	40	60	80	1	0-6	10 ⁻⁵	10-4	10	_{га} Т	STIN	OR
AETF	0N NG		DESCRIPTION	LA PI	ELEV.	MBE	μ	/S/0.	SHEAR STRE	NGTH	nat V.	+ Q- ●	W	ATER	CONTE	ENT PE	RCEN	IT	ЕЩ.	STANDPIPE INSTALLATION
~	ORII			TRA7	DEPTH (m)	NN	ŕ	N	Cu, kPa		rem v. e	₽ 0-0	w	р —	—с	w	- V	VI	LAE	
	8	+		S	(,			В	20	40	60	80	1	10	20	30	40)		
0			GROUND SURFACE	****	105.27					_		-			_					
			FILL - (CL) SILTY CLAY, some sand;		0.05	1A	~~							0						
			brown and black, organic inclusions, oxidation staining, rootlets; cohesive,			1B	33	°												
		1	w <pl, firm="" stiff<="" td="" to=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>																	
1						2	SS	8												
						3	SS	13							р					
2			Zones of organics at 2.0 m		103 14															
			(CL-CI) SILTY CLAY, some sand; brown	XX	2.13															
			to grey, oxidation staining; cohesive, w~PL. stiff to verv stiff																	
			, ,			4	SS	14							9					
3																				
						5	SS	20							6					
															Ī					
1		.	- Oxidation staining to 4.0 m																	
			Becoming grev at 4.0 m																	
		δ																		
	1E55	Auge																		
	C T T	stem				6	SS	13							9					
5	Mou	pilos																		
	Track	Ē																		
		150																		
,																				
						7	SS	12							0					
7																				
						8	SS	10												
в						Ľ														
													t							
9																				
					1															
		L			95.74															
			(SM) gravelly SILTY SAND; grey, (TILL);		9.53															
			ter sonoorto, molat, vory denac		1															
D	_ L	- -		sli fi	1	$\left \right $		-	+	-	-+	-	+		+-	- -	-+			
			CONTINUED NEXT PAGE																	
F	ידכ	100										_								
ιE	-11	50	ALC					Ň	S G C) L	DE	R							L	JGGED: YS
: :	50																		CH	ECKED: MJB

RECORD OF BOREHOLE: 18-2

LOCATION: N 4872819.36; E 724832.83

BORING DATE: December 18, 2018

SHEET 2 OF 2

	ш	DO	SOIL PROFILE			SA	MPL	ES	DYNAN RESIST	IIC PEN	ETRATIO	0N 0.3m	ì	HYDR/	AULIC Co	ONDUCT	TIVITY,	Т	.0	
	SCAL	ИЕТН		LOT		ч		.3m	2() 4	ю б	0 8	10	1	D ⁻⁶ 1	0 ⁻⁵ 1	0-4 1	_{0'³} ⊥	ONAL	PIEZOMETER OR
	METI	SING I	DESCRIPTION	ATA P	ELEV.	JMBE	TYPE	WS/0	SHEAR Cu, kPa	STREN	iGTH r	at V. + em V. ⊕	Q - ● U - O	W	ATER C		PERCE	NT	B. TE	STANDPIPE
	DE	BOF		STR/	(m)	Я		BLO	20) 4	ю 6	0 8	80	Wr 1	0 2			WI 0	۲A	
	- 10	5 Jers	CONTINUED FROM PREVIOUS PAGE (SM) gravelly SILTY SAND; grey, (TILL);	لا م .																-
	-	t CME5 tem Aug	non-conesive, moist, very dense	4 <u>4 4</u>																-
	-	k Moun Solid St		4 × 4																-
	- - 11	Trac 50 mm		4 4 4 7 4 4		9	ss	67						0					мн	-
6-5	-	<u> </u>	END OF BOREHOLE	4.4	94.14 11.13															-
T 19-	-		NOTES:																	-
MIS.GD	-		1. Water encountered during drilling at a depth of 4.6 m, December 18, 2018																	-
J GAL-	- 12 - -		2. Borehole caved to a depth of 5.2 m upon completion of drilling, December 18, 2018																	
DS.GF			3. Water measured in open portion of borebole at a depth of 3.4 m upon																	-
AMR	-		completion of drilling, December 18, 2018																	-
URNH	- 13 -																			
SEBU	-																			-
LHOU	-																			-
:OUR	- 14																			-
RG_O	-																			-
DBOU	-																			-
NT/CO	-																			-
TA/GII	- - 15 -																			-
2_DA	-																			-
SDS/0	-																			-
AMF	- 16																			-
URNH	-																			-
SE_B	-																			-
LHOU	-																			-
OUR	- - 17																			-
RG_C	-																			
BOU	-																			-
ND/CC	-																			
ERLA	- 18 -																			-
UMBE	-																			-
ORTH	-																			-
ž Ľ	- - - 10																			-
Σ	-																			-
COUL	-																			-
ENTS/	-																			
S:\CLIE	- 20																			-
001 5																				
BHS	DE	EPTH S	SCALE										2						LC	DGGED: YS
GTA.	1:	50											•						СН	ECKED: MJB

RECORD OF BOREHOLE: 18-3

LOCATION: N 4872826.96; E 724853.57

BORING DATE: December 20, 2018

SHEET 1 OF 2

	ПC		SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE. BLOWS/0.3m	ì	HYDRAULIC	CONDUCTIVITY,	T	, (7)	
RES	METH			LOT		ц.		3m	20 40 60	80	10 ⁻⁶	10 ⁻⁵ 10 ⁻⁴ 10 ⁻⁴	₃	STIN	PIEZOMETER OR
MET	RING I		DESCRIPTION	ATA P	ELEV.	UMBE	ТҮРЕ	0/S/MC	SHEAR STRENGTH nat V. Cu, kPa rem V.	+ Q-● ⊕ U-O	WATER		T E	AB. TE	STANDPIPE
i i	BOF			STR/	(m)	Ĩ		BLC	20 40 60	80	10	<u>20 30 40</u>	1	Υ, , , , , , , , , , , , , , , , , , ,	
0	_	GROU	ND SURFACE		105.63										
		FILL - gravel; inclusio cohesi	(CL) sandy SILTY CLAY, some brown, rootlets, organic ons to 0.7 m, oxidation staining; ve, w~PL, stiff		0.15	1	SS	13				0			
1						2	SS	9			0				
2		(CL-CI sand; t oxidati w>PL,) SILTY CLAY, trace to some trace gravel; brown to grey, on staining; cohesive, w~PL to very stiff to soft		103.50 2.13	4	SS	14				0			
3						5	SS	17				•			
4	5	- Oxida	ation staining at 4.0 m												
5	Track Mount CME55					6	SS	10	⊕ +			o			
6		- Beco	ming grey at 5.6 m			7	SS	11				0			
7									+						
8						8	SS	5	⊕ +		c				
9						9	SS	2			0				
10		-		<i>fill</i>	95.63	$\left - \right $		_	┝─┽┿──┝─┼─╴	-	↓	++	-		
			CONTINUED NEXT PAGE												
DEI	PTH	TH SCALE LOGGED: YS												OGGED: YS	
DEF 1 : {	РТН 50	SCALE	GOLDER												OGGED: YS ECKED: MJB

RECORD OF BOREHOLE: 18-3

LOCATION: N 4872826.96; E 724853.57

BORING DATE: December 20, 2018

SHEET 2 OF 2

┢		9		SOIL PROFILE			SA	MPL	ES	DYNA			ION	Ņ	HYDF	RAL		ONDUC	TIVITY,	т		
	SCALE		Ĭ		OT	1	~		ñ	KESIS	I ANCE	, веоw 40	5/0.3m 60	80 \		ا 10 ⁻⁶	κ, cm/s) ⁻⁵ 1	0 ⁻⁴ 1	0-3 1	STING	PIEZOMETER OR
	PTH S AETR		צפ צפ	DESCRIPTION	TA PL	ELEV.	MBER	ΥPE	VS/0.5	SHEAD	R STRE	NGTH	nat V.	+ Q-	v	WA'	TER C	ONTENT	PERCE	NT	S. TES	STANDPIPE
					TRAT	DEPTH (m)	Ŋ	F	BLOW	Cu, kP	а		rem V.	∌ U-C) w	Vp		-0 ^W	1	WI	AD	INO INCEDITION
┢		ŀ	-	CONTINUED FROM PREVIOUS PAGE	S		-		-	2	0	40	60	80	-	10	2	0 3	30 4	10		
F	- 10	-		(SC/SM) CLAYEY SAND to SILTY	K.	10.00																
E				SAND, some gravel to gravelly; grey (TILL-LIKE); cohesive, w>PL, firm																		
E																						
E							10	22	6								iO				мн	
	- 11						10	33	0								0				C	_
9-6-5																						
13			s			93.97																
IS.GI		ME55	Auge	(SM) gravelly SILTY SAND; grey, (TILL); non-cohesive, moist, very dense		11.66																
AL-M	- 12	ount C	d Sterr	····· - ······ -, ····· , · · · , - ····																		-
ດ ປ		ack M	m Soli				11	SS	50/						0							-
DS.GF		Ļ	150 m						0.13													
N					4	:																
NHA	- 13					:																-
BUR																						
USE																						
STHC					19 19 19 19 19 19	· · ·																
UOC	- 14				8 <u>1</u> 9 8		12	SS	88						0							-
ยะ			-	END OF BOREHOLE	SI. FI	14.17																
BOU				NOTES:																		
UT/C				1. Water encountered during drilling at a depth of 7.6 m. December 20, 2018																		
A/GIN	- 15			2. Borehole caved to a depth of 9.1 m																		-
DAT				upon completion of drilling, December 20, 2018																		
S\02				3. Water measured in open portion of																		
L RD				borehole at a depth of 8.9 m, December 20, 2018																		
NHAN	- 16			4. A thin walled Shelby tube sample was																		-
BUR				obtained from a borehole within 2 m from borehole 18-3 from a depth of about 10.4																		
Я				m to 10.9 m below ground surface, April 11, 2019																		
THO																						
OUR	- 17																					-
ပ္ဆ																						
30UF																						
0/COI																						
LAN	- 18																					
1BER																						
NH H																						
NOR		1																				
비	- 19																					
Ĕ																						
INTS																						
	- 20	1																				-
01 S																						
3HS 0	DF	DEPTH SCALE LOGGED: YS																				
3TA-E	1:	50		-							GC		JE	к							СН	ECKED: MJB

RECORD OF BOREHOLE: 18-4

LOCATION: N 4872789.57; E 724813.95

BORING DATE: December 18, 2018

SHEET 1 OF 2

	6	<u> </u>				SA	MPI	FS	DYNAMI	C PENET		1	<u>۲</u>	HYDR	AULIC C	ONDUC	TIVITY,			
SALE	THO			Ц				 	RESISTA	ANCE, BLO	ows/0	.3m	Š.		k, cm/s	0.5	0-4	10-3	NAL	PIEZOMETER
H SC	M L			V PLC	ELEV.	BER	Щ	s/0.3r	20 SHEAR S		60 	5 + V +		1					TES	STANDPIPE
ME	NINC		DESCRIPTION	RATA	DEPTH	NUM	Υ	SWO.	Cu, kPa	SINENOI	rer	n V. ⊕	Ũ- Ŏ	w				WI	ADD LAB.	INSTALLATION
<u> </u>	ä	í		STI	(m)	_		В	20	40	60	8	30		10 :	20 :	30	40		
- 0	L		GROUND SURFACE		105.68															
			FILL - sandy SILTY CLAY, trace gravel;		0.15	1A	99	11								0				
			brown and black, oxidation staining; cohesive, w~PL, soft to stiff			1B	33	''												
- 1						2	55	4												
			FILL - ORGANIC / TOPSOIL		104.11	-	•													
				×	103.88	3	SS	14								0				
2			gravel; brown to grey, oxidation staining;		1.00															
			stiff																	
						4	SS	15												
3																				
						5	SS	18								0				
							1													
4			- Oxidation staining at 4.0 m																	
		lers																		
	CME5	m Aug				6	SS	16								0				
5	ount 0	id Ster																		
	ack M	m Sol																		
	Ĕ	150 m																		
			- Becoming grey at 5.6 m																	
<i>c</i>																				
0																				
						7	SS	8								0				
									€		+									
7																				
													+							
8			Isolated wat sand and gravel pockate			°	55	5												
			within silty clay at 8 m depth																	
									€			+								
0																				
9						-														
						9	SS	14												
10																				
DE	DEPTH SCALE LOGGED: YS																			
1:	50	1:50 GOLDER Loc											ECKED: MJB							

RECORD OF BOREHOLE: 18-4

LOCATION: N 4872789.57; E 724813.95

BORING DATE: December 18, 2018

SHEET 2 OF 2

	щ	Q	SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN RESISTANCE	IETRAT BLOWS	ON 5/0.3m	$\sum_{i=1}^{n}$	HYDR.	AULIC C	ONDUC.	TIVITY,	Т	.0	
	SCAL	METH		LOT		ж		3m	20	40	60 E	i0 `	1) ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³ ⊥	IONAL	OR
	EPTH	RING	DESCRIPTION	ATA F	ELEV.	JMBE	түре	0/S/0	SHEAR STREI Cu, kPa	NGTH	nat V. + rem V. ⊕	Q - ● U - O	W	ATER C		PERCE	NT	AB. TE	INSTALLATION
	B	BOF		STR/	(m)	ž		BLC	20	10	60 E	80	W	0 2	.0 :	30 4	WI 10		
	- 10		CONTINUED FROM PREVIOUS PAGE	~~~~															
	-	E55 Augers	(SM) gravelly SILTY SAND; grey, (TILL);		95.55 10.13														-
	-	nt CMI Stem A	non-cohesive, moist, very dense																-
	-	k Mou Solid																	
	- - 11	Trac 50 mm				10	SS	52					0						
ц С		4	END OF BOREHOLE	d Lf	94.55 11.13														-
19-6	-		NOTES:																-
S.GDT	-		1. Water encountered during drilling at a depth of 4.6 m, December 18, 2018																
I GAL-MI	- - 12 -		2. Borehole caved to a depth of 8.2 m upon completion of drilling, December 18.2018																
RDS.GP.	-		3. Water measured in open portion of borehole at a depth of 3.5 m, December																-
AM F	-		18, 2018																-
URNH	- 13 - -										1								
SEB	-																		-
ÎNOH.	-																		-
DURT	- - 14																		-
ບ ບ	-																		-
SOUR	-																		-
L/COE	-																		-
\GIN	- - 15																		-
DATA	-																		-
S\02	-																		-
L RD	-																		-
NHAN	- - 16																		-
BUR	-																		-
USE	-																		-
RTHO	-																		-
COUF	- 17 -																		
DRG_	-																		
OBOL	-										1								:
ND/O	-										1								-
ERLA	— 18 -										1								-
UMBL	-										1								-
RTH	-										1								-
У Z	-										1								-
o ≻	— 19 - -																		
NNO	-																		-
VTS/C	-																		-
CLIE	- 20																		-
)1 S:\																			
3HS 00	DF	PTHS	CALE								\ - •	 -						LC	DGGED: YS
GTA-E	1:	50	GOLDER												СН	ECKED: MJB			

RECORD OF BOREHOLE: 18-5

LOCATION: N 4872804.40; E 724850.25

BORING DATE: December 19, 2018

SHEET 1 OF 3

ДQ	SOIL PROFILE	SAMPLES	S DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
3 METH	L L D L D L D L D L D L D L D L D L D L		5 20 40 60 80		
BORING			$ \begin{array}{c} & & \\ & & $		
	- نه GROUND SURFACE	106.04	20 40 60 80		
	FILL - Topsoil FILL - (CL) sandy SILTY CLAY, some gravel; brown and black, rootlets, organic inclusions to 0.7 m; cohesive, w~PL, stiff	0.00 0.13 1 SS 1 2 SS 1	10	0	
2	PROBABLE FILL - (CL) SILTY CLAY, some sand, some gravel; brown, oxidation staining; cohesive to w-PL,	3 SS 5 103.91 2.13	⁶⁶⁷ -	o	
3	firm	4 55 5	° ⊕ + 7		
Track Mount CME55	CL-CI) SILTY CLAY, trace sand, trace gravel; grey; cohesive, w-PL to w>PL, firm to very stiff	102.00 4.04 6 SS 1	17	н р ——- і	МН
5		7 SS 1	13 Đ +	p	
3		8 SS 9	6	0	
)	(CS/SM) CLAYEY SAND to SILTY SAND, some gravel; grey (TILL-LIKE); cohesive, w-PL, firm to very stiff	9 SS 5	5	•	
┝┝└	CONTINUED NEXT PAGE			t + +	
EPTH : 50	CONTINUED NEXT PAGE		5 +	•	LOGGED: YS CHECKED: MJB

RECORD OF BOREHOLE: 18-5

LOCATION: N 4872804.40; E 724850.25

BORING DATE: December 19, 2018

SHEET 2 OF 3

ŀ	ш	Q	Τ	SOIL PROFILE			SA	MPL	ES	DYNAMI		ETRAT	ON 5/0.3m	<u>ک</u>	HYDR.	AULIC C	ONDUCT	TVITY,	Т	. (1)	
	SCAL	VETH(F		LOT		2		.3m	20	4	0	60 8	0,	1	0 ⁻⁶ 1	0 ⁻⁵ 10	0 ⁻⁴ 1	0 ⁻³ ⊥	IONAL STINC	PIEZOMETER
	METI	SING P		DESCRIPTION	ATA P	ELEV.	JMBE	TYPE	WS/0	SHEAR Cu, kPa	STREN	IGTH	nat V. + rem V. ⊕	Q - ● U - O	w	ATER C	ONTENT	PERCE	NT	DDITI NB. TE	STANDPIPE INSTALLATION
	D	BOF			STR/	(m)	ž		BLO	20	4	0	60 8	0	WI 1	o — 1 ⊂	0** 20 3	i0 4	WI 10	ΓA	
	- 10			CONTINUED FROM PREVIOUS PAGE	4499																
ŀ				(CS/SM) CLAYEY SAND to SILTY SAND, some gravel; grey (TILL-LIKE);																	
E				cohesive, w~PL, firm to very stiff																	
ŀ																					-
	- 11						10	SS	19							þ					
6-5							-														-
-19-						04.44															-
GD1			ŀ	(SM) gravelly SILTY SAND; grey (TILL);		11.60	1														
L-MIS	- 12			dense																	_
g																					
S.GP							11	SS	19						0						:
- RD																					
NHAN	— 13																				-
BURI						i i															-
USU I																					
IHO																					-
SOUR	- 14	E55	Augers		44		12	SS	47						0						-
В В		Int CM	Stem /																		
BOU		ck Mou	Solid		4																
		Tra	50 mm		44																-
A/GIN	- 15																				
DAT					4 4																
S\02							13	SS	33						C	2					-
A RD						,															
NHAN	- 16																				-
BUR																					-
-ISC																					-
4 HC																					
COU	- 17				a :≥		14	SS	83						0						-
BRG]															
DBBO																					-
ND/CK																					
RLA	— 18																				
JMBE							\vdash														
HI							15	SS	48						0						-
		┝╌└	+	END OF BOREHOLE	ri er	18.75															
ō ≻	- 19			NOTES:																	
				1. Water encountered during drilling at a depth of 4.6 m. December 19 2018																	-
TS/C(2. Borehole caved to a depth of 14.3 m																	-
LIEN		2. Borehole caved to a depth of 14.3 m upon completion of drilling, December 19, 2018																			
S:\C	- 20																				
S 001																					
A-BH:	DEPTH SCALE LOGGED: YS												DGGED: YS								
GT,	1:	50																		CH	ECKED: MJB

RECORD OF BOREHOLE: 18-5

LOCATION: N 4872804.40; E 724850.25

BORING DATE: December 19, 2018

SHEET 3 OF 3

ŀ		Q	SOIL PROFILE			SAMP	LES	DYNAM			DN	<u>}</u>	HYDR		ONDUCT	TIVITY,	т		
	SCALE	IET HC		01		~	Ĕ	RESIS" 2	IANCE, 0 4	BLOWS 0 6	iu.3m i0 8	30 \	1	к, cm/s) ⁻⁶ 1) ⁻⁵ 10	0 ⁻⁴ 1	0-3	STING	PIEZOMETER OR
	PTH S METR	NG N	DESCRIPTION		EV.	VPE V	VS/0.:	SHEAF	STREN	IGTH r	iat V. +	Q - •	w	ATER C	ONTENT	PERCE	NT	DITIO 3. TES	STANDPIPE INSTALLATION
	DE	BORI		ATRA (PTH m)	⊇ r	BLOV	Cu, KPa	a • • •	r	em v. 🕁	0-0	Wp	·			WI	AD	
			CONTINUED FROM PREVIOUS PAGE	0)				2	0 4	.0 e		30	1	0 2	0 3	30 4			
	- 20 -		3. Water measured in open portion of borehole at a depth of 2.9 m. December																
	-		19, 2018																
	-																		
	-																		:
ъ С	- 21																		-
19-6-	-																		
5DT	-																		
MIS.0	-																		
GAL-I	- 22 -																		-
Γď	-																		-
RDS.(-																		
AM	-																		-
HNA	- 23 -																		
ы В	-																		-
SUOL	-																		-
URTI	-																		-
00	- 24 -																		
OURG	-																		
COB	-																		
LNI5	-																		
ATA/(- 25																		
02_D	-																		
RDS/	-																		-
HAM-	- - - 26																		-
JRNF	- 20																		-
Я В	-																		-
NOH:	-																		
URTI	- - - 27																		
0 0																			-
OUR	-																		
COB	-																		:
AND	- 28																		-
BERL	-																		-
MUH	-																		-
OR1	-																		-
Ч	- 29																		-
ΣĽ	-																		
000	-																		
NTS	-																		-
:/CLIE	- 30																		-
01 S.																			
BHS 0	DE	EPTH S	SCALE						$\sim \sim$			`						LC	DGGED: YS
3TA-E	1:	:50 GOLDER CHECKE											ECKED: MJB						
~																			

RECORD OF BOREHOLE: 18-6

LOCATION: N 4872769.29; E 724821.75

BORING DATE: December 18, 2018

SHEET 1 OF 2

щ		SOIL PROFILE		S	AMPL	ES	DYNAMIC P RESISTANC	ENETRATIO	N \ 0.3m \	HYDRAULI k, c	IC CONDUCTIVI	^{гү,} Т	ں _	
I SCAL RES	METH		PLOT	, <u> </u>).3m	20	40 6	0 80	10 ⁻⁶	10 ⁻⁵ 10 ⁻⁴	10 ⁻³	FIONA	
EPTH	RING	DESCRIPTION		/. 	TYPE)/S//C	SHEAR STF Cu, kPa	RENGTH n	atV. + Q emV.⊕ U	WATE	R CONTENT PE	RCENT	ADDIT AB. TI	INSTALLATION
	Ga		STR (m)	z		BLO	20	40 6	0 80	10	20 30	40	Ľ	
— (ŀ	GROUND SURFACE	105	99										
Ē		FILL - TOPSON FILL - (CL) SILTY CLAY, trace sand.		79 1A 20		7					0			
E		trace gravel; brown, organic inclusions; cohesiye, w~PL to w>PL		1B	55	1					0			
F														
Ē,				2	SS	7								_
È				Ĺ			⊕ +							
Ē														
_														
-		- Organic inclusions at 1.9 m			55	30					0			
- 2		(CL-CI) SILTY CLAY trace sand: brown	103	86 13										-
-		to grey, oxidation staining; cohesive, $w \sim Pl$ to $w > Pl$ stiff to very stiff		-										
-				4	SS	16					Φ			
_														
- 3				\vdash	-									-
_				5	SS	21					0			
_				\vdash										
_														
4														-
_		S.B.												
_	CME55	n Aug												
-	ount 0	Id Ste		6	SS	14				0				
- 6	ack M													-
-	F	150 r												
-														
-		- Becoming grey at 5.6 m									нон		мн	
- - e		- Oxidation staining to 5.6 m											С	-
						_								
-				<i>'</i>	55	1					0			
-														
							Ð	+						-
- '		(CS/SM) CLAYEY SAND to SILTY	7	90 09										
-		cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>												
_					-									
-				8	SS	19				0				_
- '														
-														
_														
F														
- 9				\vdash	-									-
-				9	SS	13								
-	\vdash	END OF BOREHOLE	96.	39 60	-									
-		NOTES:												
- 10	+-	CONTINUED NEXT PAGE	1-+		+-	-	+-			-+	-+ -	-+		
<u> </u>														
D	EPTH	H SCALE					G		ER				LC	DGGED: YS
1	: 50							~					СН	ECKED: MJB

RECORD OF BOREHOLE: 18-6

LOCATION: N 4872769.29; E 724821.75

BORING DATE: December 18, 2018

SHEET 2 OF 2

-	20																		
	19																		
- - - - - -	18																		-
	17																		-
	16																		
- - - - - - -	15																		
	14																		-
-	13																		
	12		obtained from a borehole within 2 m from borehole 18-6 from a depth of 5.5 m to 5.9 m below ground surface, April 11, 2019																
- - - - - -	11		upon completion of drilling, December 18, 2018 3. Water measured in open portion of borehole at a depth of 3.0 m, December 18, 2018 4. A thin walled Shelby tube sample was																
-	10 -		CONTINUED FROM PREVIOUS PAGE 1. Water encountered during drilling at a depth of 3.1 m, December 18, 2018 2. Borehole caved to a depth of 6.8 m																
DEPTH SCALI	MEIKES	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STRE Cu, kPa 20	40 1 NGTH 40	60 8 nat V. + rem V. ⊕ 60 8	Q - • U - O	10 W W 1	ATER C	0 ⁻⁵ 10 ONTENT <u>⊖</u> W 0 3	0 ⁻⁴ 1 PERCE	0 ⁻³ NT WI 10	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
TH SCALE	AE I KES	NG METHOD	SOIL PROFILE	TA PLOT	ELEV.	ABER	MPL 34/	/S/0.3m G	DYNAMIC PEI RESISTANCE 20 SHEAR STRE	NETRATI , BLOWS 40 NGTH	ON 6/0.3m 60 8 1 nat V. +	Q-●	HYDRA 10 W	AULIC CO k, cm/s 2 ⁻⁶ 10 ATER CO	ONDUCT D ⁻⁵ 10 ONTENT	^{-IVITY,} 0 ⁻⁴ 1 ¹ PERCE	о ⁻³ [NT	DITIONAL 3. TESTING	PIEZO

RECORD OF BOREHOLE: 18-7

LOCATION: N 4872788.46; E 724868.39

BORING DATE: December 20, 2018

SHEET 1 OF 2

	Τ	0	SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN		ON	<u>\</u>	HYDRA		ONDUC	TIVITY,	т		
CALE		ETHC		OT				ñ	RESISTANCE	BLOWS	/U.3m 50 8	во [\] ,	10	к, cm/s ⁻⁶ 1	0 ⁻⁵ 1	0-4 1	0-3	STING	PIEZOMETER OR
TH S		M D N	DESCRIPTION	'A PL	ELEV.	ABER	/PE	/S/0.3	SHEAR STRE	NGTH	nat V. +	Q - •	wA	TER C	I ONTENT	PERCE	ī NT	DITIC . TES	
DEP		SORIN		TRAT	DEPTH (m)	NUN	F	ROW	Cu, kPa	I	rem V. ⊕	9 U- O	Wp	⊢			WI	ADI	INGTALLATION
	+	ш —	GROUND SURFACE	οί	400.00	-	-	ш	20	40 (50 E	80	10) 2	:0 : 	80 4	io T		
F			FILL - Topsoil	***	0.00														· ·
-						1	SS	10						0					
E					405 70														-
F			FILL - (CL) SILTY CLAY, some sand;	*	0.69	-													-
F	1		brown, rootiets; conesive, w~PL, firm			2	SS	7						0					-
<u>s</u>																			-
2																			-
-						3	SS	5						C	•				-
E	2																		-
5_			FILL - (ML) SILT and SAND; grey;		104.35 2.13														-
5			non-cohesive, moist, compact											0					-
						4	55	11						0					-
-					103.58]												-
-	3		sand, trace gravel; brown to grey,		2.30								₽						-
- 1-			w>PL, stiff to very stiff			5	SS	14						0					-
- -																			-
E																			-
- ·	4		- Oxidation staining to 4.0 m																
2																			
		ers																	-
2	CME56	n Aug				6	SS	19							0				-
-	onnt	id Ster																	-
_	ack M	m Sol																	-
-	F	150 m																	
																			-
Ē	-																		-
F			- Becoming grey at 6.0 m				-												-
-						7	SS	13						C	}				-
E																			-
ŀ										•	+	-							-
- F	7																		
Ē																			-
-														-					-
Ē						8	SS	6						- 0	ы			C MH	-
	в																		-
-										.									-
Ē									₽										-
F					97.68														-
; E	9		SAND, some gravel; grey (TILL-LIKE);		8.80														-
E			conesive, w~PL, soft			\vdash	1												-
-						9	SS	4)					-
F							1												-
E 1	"L	L			* •	L.	L_		$ _ _ _ _$	L	$\downarrow _ _$				$\lfloor _ _$		L		
i i			CONTINUED NEXT PAGE																
-		F1 ·			-	-	•						•			•	•		
	EP1	IH S	SUALE					X	S G C) L C	E	R							JGGED: YS
	. 90																		LOALD. WIJD

RECORD OF BOREHOLE: 18-7

LOCATION: N 4872788.46; E 724868.39

BORING DATE: December 20, 2018

SHEET 2 OF 2

ŀ		6	5				SA	MPI	ES	DYNA	/IC PEN	ETRATI	ON	1	HYDR	AULIC C	ONDUC	FIVITY,			
	S				F	1		.va ' L		RESIS	TANCE,	BLOWS	/0.3m	<u>۲</u>		k, cm/s	0-5			-ING	PIEZOMETER
	H SC TRE		⊔ ۶		, PLO	ELEV.	3ER	щ	:/0.3n	2			50 00 L		10				U~ I NT	TEST	OR STANDPIPE
	DEPT			DESCRIPTION	RATA	DEPTH	IUME	TΥΡ	OWS.	Cu, kP	a a	IH I	rem V. ⊕	U- 0				PERCE	WI	ADD AB.	INSTALLATION
	Ц		נ		STR	(m)	_		BL(2	0	10	<u>30 </u> 8	0	1	0 2	20 :	30 4	10	Ľ.	
ļ	- 10			CONTINUED FROM PREVIOUS PAGE																	
	-			(SM) gravelly SILTY SAND: grev. (TILL):		96.35															
	-			non-cohesive, moist, compact																	
ŀ	-																				
						1	10	~~~	00												
E	- 11						10	55	26												-
9-2	-																				-
-19																					-
GDT		55	rgers																		
SIM-		t CME	tem A																		-
GAL-	- 12 -	Mount	olid St																		-
Г.		rack	nm S				11	22	80											мы	
DS.G		[150			1		55	05												
Σ																					
AHN	- 13																				-
BUR																					
SE SE																					:
PC	-																				-
URT							12	SS	62						0						-
8	- 14					92.31															-
URG				END OF BOREHOLE		14.17															
OBO				NOTES:																	-
Ŭ,	-			1. Water encountered during drilling at a depth of 7.6 m. December 20, 2018																	
VIGIN	- 15			2 Borehole caved to a depth of 9.8 m																	-
DATA	-			upon completion of drilling, December																	
02	-			20, 2018																	-
SDS				3. Water measured in open portion of borehole at a depth of 8.3 m, December																	:
A A A				20, 2018																	
NH/	— 16 -			4. A thin walled Shelby tube sample was obtained from a borehole within 2 m from																	-
B	-	obtained from a borehole within 2 m from borehole 18-7 from a depth of 7.5 m to 7.9 m below ground surface, April 11, 2019																	-		
USE I				2019																	-
E H																					
DUR'	17																				
о С																					-
DUR																					-
0BC																					
ND ND																					-
RLA	- 18																				-
MBE																					
E																					
NOR																					:
Ы	- 19																				-
È																					.
ĴΟ.		1																			
TS/C																					-
LEN	-																				-
S:\C	- 20	1																			-
001		L																<u> </u>			
BHS	DE	DEPTH SCALE LOGGED: YS																			
GTA-	1:	50												•						СН	ECKED: MJB

RECORD OF BOREHOLE: 18-8

LOCATION: N 4872743.97; E 724838.98

BORING DATE: December 18, 2018

SHEET 1 OF 1

ł	ш	Q		SOIL PROFILE			SA	MPLE	s D'		PENET)N 0.3m	}	HYDR		ONDUCT	TIVITY,	Т	0		
	SCALI	IET H			-OT		~		E IN	20	40	6	0.511	30	1	0 ⁻⁶ 1	0 ⁻⁵ 1	Q ⁻⁴ 1	_{p³} ⊥	STINC	PIEZOMETER OR	
	METR	2 DNG	DE	SCRIPTION	TA PL	ELEV.	MBEF	H L		HEAR ST	RENG	STH n	atV.+	Q - •	w	ATER C	ONTENT	PERCE	NT	DITIO	STANDPIPE INSTALLATION	١
	DE	BORI			TRA	DEPTH (m)	Ñ			и, кра		re	em v. 🕁	0-0	W	⊳ 	OW		WI	LAE		
ŀ		-	GROUND SURFA	CE	S	400.40			-	20	40	6	30	30	1	0 2	20 3	<u>30 4</u>	0			
ŀ	- 0		FILL - Topsoil		***	0.00			+													-
	-		FILL - (CL) SILT	Y CLAY, trace to some		0.20	1	SS	8													
ŀ	-		gravel, trace to s rootlets, organic	ome sand; brown, inclusions to 0.7 m;																		-
Ē			cohesive, w~PL,	very soft to stiff		×.																-
	- - 1						2	ss -	12						0						50 mm Monitoring	
μ						×.									_						Well	-
19-6						2																-
Ц						×.																-
AIS.G							3	SS	8								0					-
AL-N	- 2		- Pockets of orga	anic at 2.0 m		×.															Pontonito	
Э Г	-																				Dentonite	
S.GF						×.	4	SS	2								0				∇	
8																					January 4, 2019	-
HAM	- - 3		(CL-CI) SILTY C	LAY, some sand;	W	103.56 2.90																
URN			brown; cohesive	, w~PL, very stiff																		
Ш В П		ų	,				5	SS 2	28													-
SUO		ALCE ALCE																				-
IRT.		unt Cl																				
õ	- 4	solid Solid																				-
DR.		Trac																				- -
DBOI		4	<u>-</u>																			
11/C							6	ss 2	23								0				2. X	- 10 - 22 -
AIG!N	- 5																					
DATA																					Sand	
02			(21.1)			100.96																
RDS			non-cohesive, m	oist, compact to very		. 5.50																
AM	- 6		dense																			
JRN-						i.																H I
Ш	-						7	ss 2	21						0							H) :
ISUC						;																B
RTH																					Screen	H.
INOC	- 7																					时
ຶ່																						8
30 UF																						H) :
VCOI							8	ss o	i0/ 13						0							- 1251 - -
AN	- 8		END OF BOREH	IOLE	19.19	7.90		-														
BER	-		NOTES:																			-
MUH			1. Water encoun	tered during drilling at a																		-
ORT			aeptn of 2.3 m, E	December 18, 2018																		-
N L	- - 0		2. Water measur depth of 3.5 m, D	red in open borehole at a December 18, 2018																		-
Ę	-		3. Groundwater	measured in monitoring																		-
NNO			well at a depth of	t 2.6 m, January 4, 2019																		-
TS/C																						-
LIEN	-																					-
S:\C	- 10																					
S 001		I	1		1	1								1	1	1	1	1	1	L	1	
A-BH	DE	DEPTH SCALE LOGGED:											DGGED: YS									
Б	1:	50																		CH	ECKED: MJB	

RECORD OF BOREHOLE: 18-9

LOCATION: N 4872754.70; E 724863.56

BORING DATE: December 19, 2018

SHEET 1 OF 1

┟	щ	ДĢ	Ţ	SOIL PROFILE			SA	MPL	ES	DYNAMIC PE RESISTANC	ENETRA E, BLOV	TION /S/0.3m	$\overline{)}$	HYDR	AULIC k, cm	COND /s	UCTIV	ITY,	T	٦ū	
	I SCAL FRES	METH			PLOT		ШR		0.3m	20	40	60	80	1	0 ⁻⁶	10 ⁻⁵	10 ⁻⁴	1(₽-3 ⊥	TIONAL	OR STANDPIPE
	METH	RING		DESCRIPTION	ATA F	DEPTH	UMBE	TYPE)/S/VC	SHEAR STR Cu, kPa	ENGTH	nat V. rem V. 6	+ Q-● ∌ U-O	W		CONT	ENT P	ERCE	NT	ADDIT AB. TI	INSTALLATION
		BOI			STR	(m)	z		BLC	20	40	60	80	1	0	20	30	4	0		
ſ	- 0		\downarrow	GROUND SURFACE	~~~	106.95															
ŧ	0		╞		₩	106.77															
F				some gravel; brown, rootlets to 0.7 m,		0.10	1	SS	15						0						
E				to firm																	
F																					
Ē	- 1						2	SS	5							Ŷ					-
-						105.25															
0.01				(CL-CI) sandy SILTY CLAY; brown; cohesive, w~PL to w>PL, firm to very		1.70	3	SS	14							0					
	- 2			stiff																	-
							4	SS	9						⊢⊢	┝				мн	
Ē							-														
	- 3									Ð	+										-
							5	ss	17						0						
Ē		2	ters				-														
		CME5	m Auc																		
	- 4	Jount	lid Ste	(CL) Sandy SILTY CLAY, trace gravel:		102.91 4.04															-
2È		Frack N	nm Sc	brown, (TILL); cohesive, w~PL to w <pl, stiff<="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>																	
Ë			150	,																	
							6	ss	23						0						
	- 5																				-
			╞	(SM) gravelly SILTY SAND; grev. (TILL);		101.45 5.50															
				non-cohesive, moist, dense to very dense																	
	- 6																				-
8							7	SS	38					0							
-																					
Ē	- 7																				-
įĒ																					
įŧ																					
Ē																					
	- 8					98.87	°	35	09												-
Ē				END OF BOREHOLE		8.08															
F				NOTES:																	
E				1. Borehole caved to a depth of 5.8 m upon completion of drilling, December																	
; t	- 9			19, 2018																	-
E				2. vvater measured in open portion of borehole at a depth of 3.9 m, December																	
				19, 2018																	
Ē																					
Ē	- 10																				-
j																					
þ														OGGED VS							
Ł	1:	50								S G G	JL	υE	к							СН	ECKED: MJB
ע																				5.1	

RECORD OF BOREHOLE: 18-10

LOCATION: N 4872761.97; E 724883.87

BORING DATE: December 20, 2018

SHEET 1 OF 1

┢		6	<u> </u>				S4	MPI	ES	DYNAMIC F	PENETRA	TION	<u>۱</u>	HYDRA	AULIC C	ONDUC	TIVITY,	т		
	SALE			JUIL PROFILE	Ц		- SA	ivit" L	- <u>-</u>	RESISTAN	CE, BLOV	VS/0.3m	, ,		k, cm/s	0-5	0-4		NAL	PIEZOMETER
	ETRE	UN C			A PLC	ELEV.	BER	핕	S/0.3n	20 SHEAR STI	40 RENGTH	bU I nat V	×∪ + Q-●	10 W	ATER C	U ⁻ 1 ONTENT			TESI	STANDPIPE
	E B W	Nac		DESCRIPTION	RAT/	DEPTH (m)	MUM	Ł	LOWS	Cu, kPa		rem V.	ė́ ū̃-Õ	Wp		W	I	WI	ADC LAB.	INSTALLATION
┟		ă	•		ST				ā	20	40	60	80	1	0 2	20 ; T	30	40		
F	- 0			FILL - Topsoil	***	107.02 0.00														
F							1	SS	7						0					
F																				
E				FILL - (CL) sandy SILTY CLAY, some	▓	106.33 0.69														
F	- 1			gravel; brown, rootlets, organic inclusions, oxidation staining; cohesive,			2	SS	11							6				-
2				w~PL, firm to stiff																
פה				- Zone of organic at 1.6 m			3	SS	5							0				
	- 2																			-
EA EA	-			(CL-CI) SILTY CLAY, some sand;	t	104.89 2.13														
Ę				brown, oxidation staining; cohesive, w~PL, stiff to very stiff			A	55	8											
Ĩ							Ĺ	55	Ĭ											
	- २									_										-
	5						_	~		•		+			_					
							5	55	18						0					
		E55	Augers																	
	- 4	unt CM	Stem.			102.98														-
۔ اور	-	ck Mo	Solid	(CL) sandy SILTY CLAY, trace gravel; brown, (TILL); w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>4.04</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		4.04														
		Tra	50 mm	,,,,,																-
			-																	
							6	SS	31					0						
AIA(- 5																			
27																				-
AM H	- 6																			
HNH -	- 0																			
й Ц							7	SS	18						þ					
Ę																				
3E	1			(SM) gravelly SILTY SAND; grey, (TILL);		99.93 7.09														
Ë				non-conesive, very dense]														
ΞĒ						}	\vdash													
	0						8	SS	98/ 0.03					0						-
ΪĘ	o	Γ	Η	END OF BOREHOLE	Pat 1 4	8.05														
				NOTES:																
				1. Borehole caved to a depth of 6.4 m upon completion of drilling, December																
≤Ŀ	- a			20, 2018																- -
ŧ	J			2. Water measured in open portion of borehole at a depth of 4.9 m, December																
ŝĒ				20, 2018																
	- 10																			
0																				
		ידם		CALE						-	• •		-							
Я-Р П	1 ·	50	15						ľ	G G	OL	DE	R						CH	FCKED: M.IR
С		55																	51	

RECORD OF BOREHOLE: 18-11

LOCATION: N 4872713.19; E 724847.59

BORING DATE: December 17, 2018

SHEET 1 OF 1

щ	G	3	SOIL PROFILE			SA	MPL	.ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	2	HYDRA	ULIC Co k, cm/s	ONDUCT	TVITY,	Т	טי	
I SCAL FRES	Ľ			гот		R		0.3m	20 40 60 8	``	10	⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³ ⊥	TIONAL	OR STANDPIPE
EPTH MET		צוא	DESCRIPTION	ATA F	ELEV. DEPTH	UMBE	TYPE	D/S/VC	SHEAR STRENGTH nat V. + Cu, kPa rem V. ⊕	Q - ● U - O	WA	TER C		PERCE	NT	ADDIT AB. TE	INSTALLATION
Δ		2		STR	(m)	z		BLO	20 40 60 8	C	10 10) 2	0 3	0 4	0	Ĺ,	
— o			GROUND SURFACE		107.11												
-						1	ss	9					0				
-			FILL - (CL) SILTY CLAY, some sand;		0.41												
_			cohesive, w~PL, firm to very stiff														
- 1						2	ss	12				0					-
-																	
-																	
_			- Organic inclusions at 1.8 m			3	SS	8					þ				
_ 2					105.01	-											-
			(CL-CI) SILTY CLAY, some sand; brown, oxidation staining; cohesive,		2.10					+							
-			w <rl, sui<="" td=""><td></td><td></td><td>4</td><td>SS</td><td>11</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></rl,>			4	SS	11					0				
_																	
— 3 —	1					-											-
-						5	SS	15					0				
-	:55	ugers															
-	nt CME	Stem A			103.07												
- 4 -	ck Mou	Solid 3	(SM) gravelly SILTY SAND; brown to grev. (TILL): non-cohesive. moist. very		4.04												-
-	Trac	50 mm	dense														
-								50/									
- - 5						6	55	0.13			0						-
					:												
			- Becoming grey at 5.6 m		:												
- 6				2 2 4 7 2 4 7 4	1												-
						7	SS	50/			0						
								0.13									
					;												
- 7																	-
-	1																
-	1																
-	1					8	ss	62			0						
- 8	L	Ц	END OF BOREHOLE		99.03 8.08												-
_	1		NOTES:														
-	1		1. Water encountered during drilling at a														
-			2 Borehole caved to a depth of 7.4 m														
- 9 -			upon completion of drilling, December 17, 2018														-
	1		3. Water measured in open portions of														
	1		borehole at a depth of 7.2 m upon completion of drilling, December 17,														
- 10			2018														-
٦P	рт	НS	CALE							`						10	OGGED: YS
1:	50								SOLDE	K						СН	ECKED: MJB

RECORD OF BOREHOLE: 18-12

LOCATION: N 4872724.40; E 724875.64

BORING DATE: December 19, 2018

SHEET 1 OF 1

┢		Ģ		SOIL PROFILE			SA	MPLES	s	DYNAMIC PER		TION	``	HYDR		CONDL	ICTIVI	TY,	т		
	ES	ETHO			OT			1		RESISTANCE	BLOV	/S/0.3m 60	80	1	k, cm/	s 10 ⁻⁵	10 ⁻⁴	10	,₃ ⊥	STING	PIEZOMETER OR
	OTH S METR.	M G M		DESCRIPTION	LA PL	ELEV.	MBER	YPE	20/02	SHEAR STRE	NGTH	nat V	- Q- (I ATER (Î NT PE		IT	DITIC 3. TES	STANDPIPE
	DEF	BORI		-	STRAT	DEPTH (m)	NUN	Ĥ Ö		Cu, kPa	40	rem V. €	→ U-C	' w	p	C	W		VI	AD	
┟	-		GROU	ND SURFACE	0)	107.63				20	40	00	00			20	30	40	J		
E	- 0		FILL -	Topsoil (CL) SILTY CLAY, some sand:		0.00															
F			brown	, organic inclusions, rootlets; ive w~Pl firm to stiff			1	SS 8	в						0						-
E				,,																	-
F							0	CC 4													
μ	- 1						2	33 1	2							1					
19-6																					-
GDT							3	55 1	_												-
-MIS.	- 2					105.63	5	55 1													-
GAL	2		(CL-Cl gravel	I) SILTY CLAY, some sand, some ; brown; cohesive, w~PL, stiff to		2.00															-
GPJ			very st	tiff			4	SS 1	7	•		-									-
S S S S S S S S S S S S S S S S S S S							-		1												1
IHAM	- 3		(SM) g	ravelly SILTY SAND; brown to		104.73 2.90															-
AND [®]			grey, c non-co	oxidation staining, (TILL); ohesive, moist, very dense			5	SS 7	3												-
- ISL		5	2 2				_														-
THO		CME5	ne me		4 4 4 4 4 4 4 4 4																-
SUC F	- 4	Mount																			-
В Г		Track																			-
BOU		1																			-
							6	SS 0.0	0/ 05					0							-
A/GIN	- 5				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																-
DAT					10 C																-
S\02			- Beco	ming grey at 5.4 m	44																-
A R					44																-
SNHA	- 6																				-
ä							7	SS 0.	0/ 13					0							-
BUSE																					-
RTH																					
8	- 7		- Oxida	ation staining to 7.1 m																	
DR0																					-
080																					-
VDVC		\square				99.71	8	SS 0.	15					0							:
Щ.	- 8		NOTE	S:		1.52															
Ĭ			1. Bore	ehole open upon completion of																	-
IOR T			drilling	, December 19, 2018																	
발	- 9		2. Bore drilling	ehole dry upon completion of , December 18, 2018																	
È₽	-																				-
																					-
	- 10																				-
01 S																					
BHS C	DE	PTH	SCALE								1		D							LC	DGGED: YS
GTA-	1:	50						_					r							СН	ECKED: MJB

RECORD OF BOREHOLE: 18-13

LOCATION: N 4872698.55; E 724877.53

BORING DATE: December 17, 2018

SHEET 1 OF 1 DATUM: Geodetic

┠		6	_ 1				54	MDI	FS	DYNA	MIC P	ENE	TRATI	ON	``	HY	DRA	ULIC C	ONDUC	TIVITY.			
	SALE				F	1		vir"l		RESIS	TANC	E, B	BLOWS	/0.3m	Ľ,			k, cm/s		, 		ING H	PIEZOMETER
	TRE		ž		PLO	FLEV	ШШ	ш	0.3n		20	40) (50 	80	_	10	° 1	0.0	10-4	10-3	EST 10	OR STANDPIPE
	ΞΨ			DESCRIPTION	ATA	DEPTH	NMB	ΤYP	WS/	Cu, kF	R STR Pa	KENC	JIH	nat V. − em V. €	- Q-() U-(5	W/	IER C		I PERCI		ABDI AB. 7	INSTALLATION
	ō				STR	(m)	z		BLO		20	40) (60	80		vvp 10	2		30	40	1~]	
				GROUND SURFACE		108.29					Ī										Ī		
Ē	- 0			FILL - Topsoil		0.00																	
E						Š.	1	SS	11									0					
F						8																	
E				FILL - (CL) sandy SILTY CLAY, some	鮾	0.69																	
E	- 1			gravel; brown, oxidation staining; cohesive, w~PL, stiff		Š.	2	ss	14									0					50 mm Monitoring
μ				,,,,,,		Š.																	Well
19-6				(SM) gravelly SILTY SAND some		106.92																	Σ
ЪĒ				gravel; brown to grey, (TILL);		i.																	January 4, 2019
S.G				non-conesive, moist, very dense		i.	3	SS	50							C							
¥-	- 2																						-
Ч С																							
GP																							
SDS						u J	4	55	92													MH	
ş																							Bentonite
HN -	- 3					i.			500														-
ВĻ						1	5	SS	0.13							0							
Ы			ε																				
Ĕ		1E55	Auge		ă a a																		
URT -		nt CN	Stem			у 																	
8	- 4	Mou	Solid	- Becoming grey at 4.0 m																			
Ъ.		Track	E E			*1 ?]																	
BOL			150		4	, ,																	
22					9		6	SS	50/ 0.08							0	>						
-ND	- 5																						
ATA/	0																						
						r.																	
)S()																							
R -																							
IHAN	- 6																						Sand Sand
URN							7	ss	50/							l c							
шГ									0.13														
SUO						i.																	Screen
RTH					4 . B	i.																	
<u>S</u>	- 7				9																		
ΰĽ					9 4																		
UO L						1.																	
SOB						i.																	l Euler
ND/		L				100.29	8	SS	0.23								ן נ						
ЦЧ.	- 8		-	END OF BOREHOLE		8.00				1													
IMBE				NOTES:																			
Ē				1. Borehole dry upon completion of																			
NOR				drilling, December 18, 2018																			
Ъ	- 9			2. Groundwater measured in monitoring well at a depth of 1.4 m. January 4, 2019																			-
Ľ	-																						:
ND-																							
-S/C																							
EN																							
-CL	- 10																						-
100																							
BHS (DE	PT	нs	CALE							C (\mathbf{n}	1 6) F	D							L	OGGED: YS
GTA-	1:	50									5				· `							C⊦	IECKED: MJB

RECORD OF BOREHOLE: 18-14

LOCATION: N 4872859.69; E 724827.39

BORING DATE: December 20, 2018

SHEET 1 OF 1

┟	Щ	ç		SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRAT RESISTANCE, BLOW	TON \ S/0.3m \	HYDRAULIC Co	ONDUCTIVITY, -	ق تـ	
	TH SCA		פ אבו	DESCRIPTION	A PLOT	ELEV.	1 BER	Ĥ	S/0.3m	20 40 SHEAR STRENGTH	60 80 nat V. + Q - (10 ⁻⁶ 1	0 ⁻⁵ 10 ⁻⁴ 10 ⁻³		
	Μ Π Π Π			DESCRIPTION	STRAT,	DEPTH (m)	NUN	₽	BLOW:	Cu, kPa	rem V. ⊕ U - (0 wp ⊢		ADI LAB.	INSTALLATION
ŀ				GROUND SURFACE		104.24				20 40					
F	- 0			FILL - Topsoil		0.00									
			-	FILL - (CL) sandy SILTY CLAY; brown, rootlets, organic inclusions; cohesive, w~PL, stiff		0.25	1	SS	11			0			
6-5	- 1			(CL-CI) SILTY CLAY, some sand; brown to grey, oxidation staining; cohesive, w~PL, stiff to very stiff		0.69	2	SS	11				0		
AL-MIS.GDT 19-	- 2	5	gers				3	SS	15				0		
RDS.GPJ G		(Mount CME5	Solid Stem Aug	- Oxidation staining to 2.1 m			4	SS	22				Þ		
URNHAM F	- 3	Track	150 mm (- Becoming grey at 2.9 m											- - -
COURTHOUSE B	- 4						5	SS	11				0		
3INT/COBOURG						99.21	6	SS	6				0		
DATA/C	- 5			END OF BOREHOLE		5.03									
RDS/02				NOTES: 1. Borehole open upon completion of drilling, December 20, 2018											
3URNHAM	- 6			2. Water measured in open borehole/well at a depth of 5.0 m upon completion of drilling, December 20, 2018											
RG_COUR	- 7														
D/COBOU															
MBERLAN	- 8														
NORTHU															
5 ∠	- 9														
COUNT															
LIENTS															
11 S:\C	- 10														
3TA-BHS 00	DE 1 :	EPT 50	нs	CALE						GOLI	DER			L	DGGED: YS ECKED: MJB

RECORD OF BOREHOLE: 18-15

LOCATION: N 4872867.24; E 724884.56

BORING DATE: December 21, 2018

SHEET 1 OF 1 DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR BLOWS/0.3m 20 40 NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0^W WpH - WI (m) 40 60 80 10 20 30 40 GROUND SURFACE 105.02 C FILL - Topsoil 0.00 FILL - (CL) SILTY CLAY, trace sand; 0.15 SS 5 1 grey, organic inclusions; cohesive, w~PL, firm to stiff 50 mm Monitoring Well 2 SS 7 OF NORTHUMBERLANDICOBOURG COURTHOUSE BURNHAM RDS/02 DATA/GINT/COBOURG COURTHOUSE BURNHAM RDS/GPJ GAL-MIS/GDT 19-6-5 Bentonite SS 3 8 2 102.89 Auger Track Mount CME55 (CL) SILTY CLAY, some sand; brown 2.13 oxidation staining; cohesive, w<PL, stiff SS 4 13 Solid Ζ Sand <u>⊻</u> January 4, 2018 102.12 2 (CL-CI) SILTY CLAY, trace sand; brown to grey; cohesive, w<PL, stiff to very stiff 150 3 SS 22 5 Screen 4 - Becoming grey at 4.0 m 6 SS 12 Sand 5 XX 99.99 5.03 END OF BOREHOLE NOTES: 1. Water encountered during drilling at a depth of 2.3 m, December 21, 2018 2. Borehole open upon completion of drilling, December 21, 2018 6 3. Water measured in well at a depth of 4.5 m upon completion of drilling, December 18, 2018 4. Groundwater measured in monitoring well at a depth of 2.8 m, January 4, 2018 7 8 9 S:\CLIENTS\COUNTY_ 10 GTA-BHS 001 \Diamond DEPTH SCALE GOLDER LOGGED: YS 1 : 50 CHECKED: MJB

RECORD OF BOREHOLE: 18-16

LOCATION: N 4872850.59; E 724912.40

BORING DATE: December 21, 2018

SHEET 1 OF 1 DATUM: Geodetic

SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 60 80 10⁻⁶ 10-5 10-4 10⁻³ OR BLOWS/0.3m 20 40 NUMBER STANDPIPE ELEV. ТҮРЕ SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0^W WpH - wi (m) 20 40 60 80 10 20 30 40 GROUND SURFACE 105.73 C 0.00 105.53 0.20 FILL - Topsoil FILL - (CL) SILTY CLAY, some sand; 1 SS 9 brown, rootlets, organic inclusions to 0.7 m; cohesive, w~PL, stiff 2 SS 8 1 SICLIENTSICOUNTY_OF_NORTHUMBERLANDICOBOURG_COURTHOUSE_BURNHAM_RDSI02_DATAIGINTICOBOURG_COURTHOUSE_BURNHAM_RDSIGPJ_CAL-MISIGDT_19-6-5 SS 3 9 2 Augers 103.60 Track Mount CME55 (ML) sandy SILT, trace plastic fines; 2.13 brown, oxidation staining, rootlets; non-cohesive, w~PL, stiff SS 4 9 Solid 102.83 (CL-CI) SILTY CLAY, some sand; brown; cohesive, w~PL, stiff 150 3 5 SS 10 101.69 4 (CL) CLAYEY SAND to SILTY SAND, some sand; brown, (TILL-LIKE); cohesive, w~PL, stiff 6 SS 13 100.70 5.03 5 END OF BOREHOLE NOTES: 1. Water encountered during drilling at a depth of 3.1 m, December 21, 2018 2. Water measured in borehole at a 6 depth of 4.8 m upon completion of drilling, December 18, 2018 7 8 9 10 GTA-BHS 001 \Diamond DEPTH SCALE GOLDER LOGGED: YS 1 : 50 CHECKED: MJB

RECORD OF BOREHOLE: 18-17

LOCATION: N 4872927.17; E 724993.59

BORING DATE: December 21, 2018

SHEET 1 OF 1

DATUM: Geodetic HYDRAULIC CONDUCTIVITY,

	щ	G	n	SOIL PROFILE			SA	MPL	ES	DYNAI RESIS	VIC PEN TANCE,	ETRATIO	DN /0.3m	ì	HYDR.	AULIC C k, cm/s	ONDUCT	TIVITY,	Т	.0	
	SCAL	Ę	Į		гот		æ		Зm	2	0 4	ю е	50 E	30	1	0 ⁻⁶ 1	0 ⁻⁵ 1	0-4 10	_{0'³} ⊥	STIN	OR
	AETE METE		ב צני צ	DESCRIPTION	TA PI	ELEV.	MBEI	ΥPE	VS/0.	SHEAD	R STREM	IGTH r	nat V. +	Q - ●	W	ATER C	ONTENT	PERCE	NT	ΞΞ.	STANDPIPE INSTALLATION
	DE		N N N		TRA7	DEPTH (m)	Ñ	Ĥ.	NOT	Cu, KP	а	r	em v. ⊕	0-0	w	p	O ^W		WI	LAE	
ŀ		-	-		°,				В	2	20 4	10 E	60 E	30	1	0 2	20 3	30 4	0		
ŀ	— o	-		GROUND SURFACE	××××	104.73															
	-					0.00															-
	-						1	SS	4												-
	-					104.04															-
	-			(CL-CI) SILTY CLAY, some sand;		0.69	-														-
ļ	- 1			brown; conesive, w~PL to w <pl, stiff="" to<br="">very stiff</pl,>			2	ss	12												-
μ	-			-																	-
19-6	-																				-
÷.	-																				-
S.GI	-						3	SS	12												-
¥.	- 2		s																		-
GAI	-	E55	Auger																		-
G	-	ft CM	tem /																		-
DS.C	-	Mour	olid S				4	SS	16												-
2	-	rack	S mu																		-
IHAN	- - 3	F	150 r																		
LRN L	-																				-
е -	-						5	SS	20												-
SNO	-																				-
ŤΤ	-																				-
no:	- 4																				-
с U	-																				-
OUR 0	-																				-
Э В С	-																				-
ž	-						6	SS	15												
A/G	- 5					99.70 5.03															-
DAT.	-																				-
02	-			NOTES:																	-
SDS	-			1. Borehole open upon completion of drilling. December 21. 2018																	-
Ņ	-			2 Water measured in borehole at a																	-
ΗN	— 6 -			depth of 4.9 m upon completion of																	
BUR	-			drilling, December 18, 2018																	-
Ы	-																				-
P	-																				-
Ш	_																				-
õ	- 7																				
ЪЪ	-																				-
BOL	-	1																			-
00	-	1																			-
ANC	- - 8																				
ËR	-																				-
UMB	-	1																			-
Ĩ	-																				-
<u>ō</u>	-																				-
Ь	- - 9	1																			
Ľ	-																				-
SU	-																				-
S/C	-	1																			-
Z	-																				-
, CL	- 10	1																			-
S S																					
10 ST												_		_							
A-B⊦	DE	:PT	НS	CALE					X		GΟ	LC)EF	2						LC	JGGED: YS
ĹΒ	1:	50																		CH	ECKED: MJB

RECORD OF BOREHOLE: 18-19

LOCATION: N 4872686.51; E 724890.58

BORING DATE: December 17, 2018

SHEET 1 OF 1

┟		1					SA	MPI	ES	DYNAMIC	PENE	TRATIC)N	`	HYDRA		ONDUCT	IVITY,	т		
	SCALE		ETHO		OT		~		m	RESISTAN 20	NCE, E	SLOWS/	บ.3m 0 ค	o ۲	1(k, cm/s) ⁻⁶ 1() ⁻⁵ 1()-4 1	0-3	STING	PIEZOMETER OR
	OTH S		M N N	DESCRIPTION	TA PL	ELEV.	MBER	ΥPE	VS/0.3	SHEAR S	REN	GTH r	at V. +	Q - •	w	ATER CO	ONTENT	PERCE	NT	DITIC 8. TES	STANDPIPE
	DEF		BOR		STRA ⁻	DEPTH (m)	IN	F	BLOV	си, кра	40	r N G	em v.⊕	0-0	Wr 1	₀			WI	LAE	
ŀ	0	t		GROUND SURFACE	0,	109.03				20	40) (<u>u c</u>			0 2	0 3	0 4			
E	- 0			FILL - Topsoil		0.00															-
ŀ							1	SS	6							C)				-
E						108.34															-
ŀ				(CL-CI) SILTY CLAY, some sand; brown; cohesive, w~PL		0.69	2	~~	52							0					-
ŝ	- 1						2	33	55												-
19-6				(SM) gravelly SILTY SAND; brown,		107.66 1.37															-
GDT				(TILL); non-cohesive, moist, very dense			_	~~	06												-
-MIS.			sis				3	55	00												-
GAL	- 2	CME55	m Auge																		-
GР		fount 0	id Stei						05												-
RDS		Frack N	nm So				4	33	90												-
HAM		[150 1																		-
3URN]	5	SS	50/ 0.10						0						-
E E E						}															-
Ę																					-
OUR	- 4																				-
С С																					-
BOUF																					-
100						104.18	6	SS	50/ 0.13						0						-
A/GIN	- 5			END OF BOREHOLE		4.85															_
DAT				NOTES:																	-
S/02				1. Borehole open and dry upon completion of drilling, December 17,																	-
A RD				2018																	-
NHAN	- 6																				-
BUR																					-
ПSП																					-
STH0																					-
ло С	- 7																				
, BRG																					-
BOL																					-
ND/O																					-
ERLA	- 8																				-
JMBE																					-
RTH																					-
N N																					-
o ≻	- 9																				
INNO																					-
TS/C																					-
, LIEN																					-
S:\C	- 10																				_
IS 001		1						l						1	1				I		
A-BH	DE	EPT	ΉS	CALE					X	S G	0	LC	EF	2						LC	DGGED: YS
Б	1:	: 50																		CH	ECKED: MJB

RECORD OF BOREHOLE: 18-20

LOCATION: N 4872645.91; E 724879.23

BORING DATE: December 21, 2018

SHEET 1 OF 1

					C^	MPI	E 6	DYNAMIC PENETRA	ΓΙΟΝ	<u>\</u>	HYDRAUL	IC CONDI	ICTIVITY.			
CALE	THOL		1 L		SA	iviPL	 	RESISTANCE, BLOV	/S/0.3m	ί,	40 ⁻⁶	cm/s	10 ⁻⁴	10-3	NAL	PIEZOMETER
TH S(ETRE	IG ME	DESCRIPTION	A PLO	ELEV.	IBER	ΡE	S/0.31	SHEAR STRENGTH	nat V. +	Q - ●	WATE			ENT	DITIO	
DEP	SORIN	BECOM HON	TRAT	DEPTH (m)	NUN	Ł	ROW	Cu, kPa	rem V. 🕀	U- O	Wp 🛏	0	W	WI	ADI	INSTALLATION
		GROUND SURFACE	ο.	400.00			ш	20 40	60 8	30	10	20	30	40		
0 	h	FILL - Topsoil	***	0.00												
F					1	SS	16									
E				400.50												
-		(SM) gravelly SILTY SAND, trace plastic		0.69	\vdash											
- 1		fines; brown, (TILL), oxidation staining; non-cohesive, moist, very dense			2	SS	57									-
SE																
2																
-					3	SS	88									
- - 2		818														
	SME56	им п														
È	lount (4	SS	50/ 0.03									
Ē	rack N	os ee														
-	 	150 r		1												
E ³				1	5	SS	50/ 0.13									-
í – 1 –																
Ē				1												
E																
- 4			44													
Ë																
E																
-				104.43	6	SS	50/ 0.13									
- 5		END OF BOREHOLE		4.85												-
		NOTES:														
-		1. Borehole open and dry upon completion of drilling, December 21,														
E		2018														
- 6																_
E																
-																
E																
- 7																_
Ē																
E																
F																
Ē,																_
L °																-
F																
E																
ŀ																
9																-
E																
F																
Ē																
- 10																-
<u> </u>																
DE	EPTH	I SCALE								C					LC	OGGED: YS
1:	50									٦					СН	ECKED: MJB

RECORD OF BOREHOLE: 18-21

LOCATION: N 4872668.29; E 724923.60

BORING DATE: December 21, 2018

SHEET 1 OF 1

ŀ	щ	G		SOIL PROFILE			SAI	MPL	ES	DYNAMIC PENET RESISTANCE, BL	RATION OWS/0.3	m	HYDRA	ULIC CO k, cm/s	NDUCT	IVITY,	Т	ı۵	
	I SCAL TRES				гот		R		0.3m	20 40	60	80	1 0 ⁻	⁶ 10	⁵ 10) ⁻⁴ 10	_{₽³} ⊥	TIONAL	PIEZOMETER OR STANDPIPE
	METH		שאואפ	DESCRIPTION	RATA F	DEPTH	IUMBE	TYPE	OWS/(SHEAR STRENG Cu, kPa	TH nat rem	V. + Q - V.⊕ U -	WA			PERCE	NT	ADDIT AB. TI	INSTALLATION
			2		STF	(m)	2		BL	20 40	60	80	10	2	0 3	0 4	0		
ŀ	- 0	╞		FILL - Topsoil		108.84 0.00													-
ŀ							1	ss	5										-
E						108.15													-
E				FILL - (SM) gravelly SILTY SAND; brown organic inclusions rootlets:		0.69	\vdash												-
F	- 1			non-cohesive, moist, compact			2	SS	22										-
9-6-5						107.47													-
DT 1				(SM) gravely SILTY SAND, trace plastic fines; brown, (TILL); non-cohesive,		1.37	3	SS	50/										-
AIS.G			s	moist, very dense					0.05										-
3AL-N	- 2	ME55	n Auge]													
GPJ (fount C	lid Ster				4	ss	50/										-
ZDS.(Frack N	mm So						0.00										-
IAM		ľ	150																-
TNRU TN	- 3						5	ss	50/ 0.08										
9 18																			-
лон					÷ 19:4 19:4														-
DURT	- 4																		-
კ ე																			1
SOUR																			-
						104.12	6	SS	50/ 0.15										-
//GIN	- 5			NOTES:															-
DAT				1. Borehole open and dry upon															-
S/02				completion of drilling, December 21, 2018															-
ar l																			-
NHA	- 6																		-
BUR																			-
USE ■																			-
RTHO																			-
00	- 7																		-
URG																			-
0B0																			
ND/QN																			1
ËRL	- 8																		
HUME																			-
ORT																			-
∠ 5	- 9																		-
Ĕ																			-
COU.																			-
ENTS																			-
:/CLIE	- 10																		-
001 S																			
-BHS	DE	EPTH SCALE LOGGED: YS																	
GTA	1:	50										- • •						CH	ECKED: MJB

RECORD OF BOREHOLE: 18-22

LOCATION: N 4872679.87; E 724952.48

BORING DATE: December 21, 2018

SHEET 1 OF 1 DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SAMPLES SOIL PROFILE BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 40 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR BLOWS/0.3m 20 NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW WpH - WI (m) 10 40 60 80 20 30 40 GROUND SURFACE 107.73 C FILL - Topsoil 0.00 SS 15 1 107.04 FILL - (SP) SAND, with pockets of silty clay; brown, organic inclusions; non-cohesive, moist, loose 50 mm Monitoring Well 2 SS 6 SICLIENTSICOUNTY_OF_NORTHUMBERLANDICOBOURG_COURTHOUSE_BURNHAM_RDSI02_DATAIGINTICOBOURG_COURTHOUSE_BURNHAM_RDSIGPJ_CAL-MISIGDT_19-6-5 106.36 Bentonite (SM) gravelly SILTY SAND, trace plastic fines; brown, (TILL); non-cohesive, moist, dense to very dense SS 49 3 ∇ Track Mount CME55 January 4, 2019 2 Stem Solid : SS 50/ 4 E 150 1 24282828282828282 Sand 3 ss 50/ 5 Screen 4 泪 50/ 6 SS 103.03 4.70 Sand END OF BOREHOLE 5 NOTES: 1. Borehole open and dry upon completion of drilling, December 21, 2018 2. Ground water measured in monitoring well at a depth of 1.9 m below ground surface, January 4, 2019 6 7 8 9 10 GTA-BHS 001 \diamond DEPTH SCALE GOLDER LOGGED: YS 1:50 CHECKED: MJB
APPENDIX A

Important Information and Limitations of This Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

Cone Penetration Test Results

PRESENTATION OF SITE INVESTIGATION RESULTS

Golden Plough Lodge

Prepared for:

Golder Associates

ConeTec Job No: 19-05024

Project Start Date: 10-Apr-2019 Project End Date: 11-Apr-2019 Report Date: 16-Apr-2019

Prepared by:

ConeTec Investigations Ltd. 9033 Leslie Street, Unit 15 Richmond Hill, ON L4B 4K3

Tel: (905) 886-2663 Fax: (905) 886-2664 Toll Free: (800) 504-1116

ConeTecON@conetec.com www.conetec.com www.conetecdataservices.com

Introduction

The enclosed report presents the results of the site investigation program conducted by ConeTec Investigations Ltd. for Golder Associates at the Golden Plough Lodge, Cobourg, ON. The program consisted of eight cone penetration tests (CPTu).

Project Information

Project				
Client	Golder Associates			
Project	Golden Plough Lodge			
ConeTec project number	19-05024			

An aerial overview from Google Earth including the CPTu test locations is presented below.

Rig Description	Deployment System	Test Type
CPT track rig (M5T)	14 ton rig cylinder	СРТ

Coordinates						
Test Type	Collection Method	EPSG Number				
СРТ	Consumer grade GPS	32617				

Cone Penetrometers Used for this Project							
Cone Description	Cone Number	Cross	Sleeve	Тір	Sleeve	Pore Pressure	
		Sectional	Area	Capacity	Capacity	Capacity	
		Area (cm²)	(cm²)	(bar)	(bar)	(psi)	
311:T1000F10U500	311	10	150	1000	10	500	
Cone 311 was used for all CPT soundings.							

Cone Penetration Test	
(CPTu)	
Depth reference	Depths are referenced to the existing ground surface at the time of each test.
Tip and sleeve data offset	0.1 meter
	This has been accounted for in the CPT data files.
Additional plats	Advanced plots with Ic, Su(Nkt), Phi, and N1(60)Ic, as well as Soil Behaviour
	Type (SBT) scatter plots have been included in the data release package.

Calculated Geotechnical Parameter Tables						
Additional information	The Normalized Soil Behaviour Type Chart based on Q_{tn} (SBT Q_{tn}) (Robertson, 2009) was used to classify the soil for this project. A detailed set of calculated CPTu parameters have been generated and are provided in Excel format files in the release folder. The CPTu parameter calculations are based on values of corrected tip resistance (q_t) sleeve friction (f_s) and pore pressure (u_2). Effective stresses are calculated based on unit weights that have been assigned to the individual soil behaviour type zones and the assumed equilibrium pore pressure profile. Soils were classified as either drained or undrained based on the Q_{tn} Normalized Soil Behaviour Type Chart (Robertson, 2009). Calculations for both drained and undrained parameters were included for materials that classified as silt mixtures – clayey silt to silty clay (zone 4) and sand mixtures – silty sand and sandy silt (zone 5).					

Limitations

This report has been prepared for the exclusive use of Golder Associates (Client) for the project titled "Golden Plough Lodge". The report's contents may not be relied upon by any other party without the express written permission of ConeTec Investigations Ltd. (ConeTec). ConeTec has provided site investigation services, prepared the factual data reporting and provided geotechnical parameter calculations consistent with current best practices. No other warranty, expressed or implied, is made.

The information presented in the report document and the accompanying data set pertain to the specific project, site conditions and objectives described to ConeTec by the Client. In order to properly understand the factual data, assumptions and calculations, reference must be made to the documents provided and their accompanying data sets, in their entirety.

Cone penetration tests (CPTu) are conducted using an integrated electronic piezocone penetrometer and data acquisition system manufactured by Adara Systems Ltd., a subsidiary of ConeTec.

ConeTec's piezocone penetrometers are compression type designs in which the tip and friction sleeve load cells are independent and have separate load capacities. The piezocones use strain gauged load cells for tip and sleeve friction and a strain gauged diaphragm type transducer for recording pore pressure. The piezocones also have a platinum resistive temperature device (RTD) for monitoring the temperature of the sensors, an accelerometer type dual axis inclinometer and a geophone sensor for recording seismic signals. All signals are amplified down hole within the cone body and the analog signals are sent to the surface through a shielded cable.

ConeTec penetrometers are manufactured with various tip, friction and pore pressure capacities in 5 cm², 10 cm² and 15 cm² tip base area configurations in order to maximize signal resolution for various soil conditions. The specific piezocone used for each test is described in the CPT summary table presented in the first appendix. The 15 cm² penetrometers do not require friction reducers as they have a diameter larger than the deployment rods. The 10 cm² piezocones use a friction reducer consisting of a rod adapter extension behind the main cone body with an enlarged cross sectional area (typically 44 mm diameter over a length of 32 mm with tapered leading and trailing edges) located at a distance of 585 mm above the cone tip.

The penetrometers are designed with equal end area friction sleeves, a net end area ratio of 0.8 and cone tips with a 60 degree apex angle.

All ConeTec piezocones can record pore pressure at various locations. Unless otherwise noted, the pore pressure filter is located directly behind the cone tip in the " u_2 " position (ASTM Type 2). The filter is 6 mm thick, made of porous plastic (polyethylene) having an average pore size of 125 microns (90-160 microns). The function of the filter is to allow rapid movements of extremely small volumes of water needed to activate the pressure transducer while preventing soil ingress or blockage.

The piezocone penetrometers are manufactured with dimensions, tolerances and sensor characteristics that are in general accordance with the current ASTM D5778 standard. ConeTec's calibration criteria also meets or exceeds those of the current ASTM D5778 standard. An illustration of the piezocone penetrometer is presented in Figure CPTu.

Figure CPTu. Piezocone Penetrometer (15 cm²)

The ConeTec data acquisition systems consist of a Windows based computer and a signal conditioner and power supply interface box with a 16 bit (or greater) analog to digital (A/D) converter. The data is recorded at fixed depth increments using a depth wheel attached to the push cylinders or by using a spring loaded rubber depth wheel that is held against the cone rods. The typical recording interval is 2.5 cm; custom recording intervals are possible.

The system displays the CPTu data in real time and records the following parameters to a storage media during penetration:

- Depth
- Uncorrected tip resistance (q_c)
- Sleeve friction (f_s)
- Dynamic pore pressure (u)
- Additional sensors such as resistivity, passive gamma, ultra violet induced fluorescence, if applicable

All testing is performed in accordance to ConeTec's CPT operating procedures which are in general accordance with the current ASTM D5778 standard.

Prior to the start of a CPTu sounding a suitable cone is selected, the cone and data acquisition system are powered on, the pore pressure system is saturated with either glycerine or silicone oil and the baseline readings are recorded with the cone hanging freely in a vertical position.

The CPTu is conducted at a steady rate of 2 cm/s, within acceptable tolerances. Typically one meter length rods with an outer diameter of 38.1 mm are added to advance the cone to the sounding termination depth. After cone retraction final baselines are recorded.

Additional information pertaining to ConeTec's cone penetration testing procedures:

- Each filter is saturated in silicone oil under vacuum pressure prior to use
- Recorded baselines are checked with an independent multi-meter
- Baseline readings are compared to previous readings
- Soundings are terminated at the client's target depth or at a depth where an obstruction is encountered, excessive rod flex occurs, excessive inclination occurs, equipment damage is likely to take place, or a dangerous working environment arises
- Differences between initial and final baselines are calculated to ensure zero load offsets have not occurred and to ensure compliance with ASTM standards

The interpretation of piezocone data for this report is based on the corrected tip resistance (q_t) , sleeve friction (f_s) and pore water pressure (u). The interpretation of soil type is based on the correlations developed by Robertson et al. (1986) and Robertson (1990, 2009). It should be noted that it is not always possible to accurately identify a soil behaviour type based on these parameters. In these situations, experience, judgment and an assessment of other parameters may be used to infer soil behaviour type.

The recorded tip resistance (q_c) is the total force acting on the piezocone tip divided by its base area. The tip resistance is corrected for pore pressure effects and termed corrected tip resistance (q_t) according to the following expression presented in Robertson et al. (1986):

 $q_t = q_c + (1-a) \bullet u_2$

where: qt is the corrected tip resistance

 q_c is the recorded tip resistance

 u_2 is the recorded dynamic pore pressure behind the tip (u_2 position)

a is the Net Area Ratio for the piezocone (0.8 for ConeTec probes)

The sleeve friction (f_s) is the frictional force on the sleeve divided by its surface area. As all ConeTec piezocones have equal end area friction sleeves, pore pressure corrections to the sleeve data are not required.

The dynamic pore pressure (u) is a measure of the pore pressures generated during cone penetration. To record equilibrium pore pressure, the penetration must be stopped to allow the dynamic pore pressures to stabilize. The rate at which this occurs is predominantly a function of the permeability of the soil and the diameter of the cone.

The friction ratio (Rf) is a calculated parameter. It is defined as the ratio of sleeve friction to the tip resistance expressed as a percentage. Generally, saturated cohesive soils have low tip resistance, high friction ratios and generate large excess pore water pressures. Cohesionless soils have higher tip resistances, lower friction ratios and do not generate significant excess pore water pressure.

A summary of the CPTu soundings along with test details and individual plots are provided in the appendices. A set of files with calculated geotechnical parameters were generated for each sounding based on published correlations and are provided in Excel format in the data release folder. Information regarding the methods used is also included in the data release folder.

For additional information on CPTu interpretations and calculated geotechnical parameters, refer to Robertson et al. (1986), Lunne et al. (1997), Robertson (2009), Mayne (2013, 2014) and Mayne and Peuchen (2012).

The cone penetration test is halted at specific depths to carry out pore pressure dissipation (PPD) tests, shown in Figure PPD-1. For each dissipation test the cone and rods are decoupled from the rig and the data acquisition system measures and records the variation of the pore pressure (u) with time (t).

Figure PPD-1. Pore pressure dissipation test setup

Pore pressure dissipation data can be interpreted to provide estimates of ground water conditions, permeability, consolidation characteristics and soil behaviour.

The typical shapes of dissipation curves shown in Figure PPD-2 are very useful in assessing soil type, drainage, in situ pore pressure and soil properties. A flat curve that stabilizes quickly is typical of a freely draining sand. Undrained soils such as clays will typically show positive excess pore pressure and have long dissipation times. Dilative soils will often exhibit dynamic pore pressures below equilibrium that then rise over time. Overconsolidated fine-grained soils will often exhibit an initial dilatory response where there is an initial rise in pore pressure before reaching a peak and dissipating.

Figure PPD-2. Pore pressure dissipation curve examples

In order to interpret the equilibrium pore pressure (u_{eq}) and the apparent phreatic surface, the pore pressure should be monitored until such time as there is no variation in pore pressure with time as shown for each curve in Figure PPD-2.

In fine grained deposits the point at which 100% of the excess pore pressure has dissipated is known as t_{100} . In some cases this can take an excessive amount of time and it may be impractical to take the dissipation to t_{100} . A theoretical analysis of pore pressure dissipations by Teh and Houlsby (1991) showed that a single curve relating degree of dissipation versus theoretical time factor (T*) may be used to calculate the coefficient of consolidation (c_h) at various degrees of dissipation resulting in the expression for c_h shown below.

$$c_h = \frac{T^* \cdot a^2 \cdot \sqrt{I_r}}{t}$$

Where:

- T* is the dimensionless time factor (Table Time Factor)
- a is the radius of the cone
- I_r is the rigidity index
- t is the time at the degree of consolidation

Table Time Factor.	T* versus degree	of dissipation	(Teh and Houlsby	(1991))
--------------------	------------------	----------------	------------------	---------

Degree of Dissipation (%)	20	30	40	50	60	70	80
T* (u ₂)	0.038	0.078	0.142	0.245	0.439	0.804	1.60

The coefficient of consolidation is typically analyzed using the time (t_{50}) corresponding to a degree of dissipation of 50% (u_{50}). In order to determine t_{50} , dissipation tests must be taken to a pressure less than u_{50} . The u_{50} value is half way between the initial maximum pore pressure and the equilibrium pore pressure value, known as u_{100} . To estimate u_{50} , both the initial maximum pore pressure and u_{100} must be known or estimated. Other degrees of dissipations may be considered, particularly for extremely long dissipations.

At any specific degree of dissipation the equilibrium pore pressure (u at t_{100}) must be estimated at the depth of interest. The equilibrium value may be determined from one or more sources such as measuring the value directly (u_{100}), estimating it from other dissipations in the same profile, estimating the phreatic surface and assuming hydrostatic conditions, from nearby soundings, from client provided information, from site observations and/or past experience, or from other site instrumentation.

For calculations of c_h (Teh and Houlsby (1991)), t_{50} values are estimated from the corresponding pore pressure dissipation curve and a rigidity index (I_r) is assumed. For curves having an initial dilatory response in which an initial rise in pore pressure occurs before reaching a peak, the relative time from the peak value is used in determining t_{50} . In cases where the time to peak is excessive, t_{50} values are not calculated.

Due to possible inherent uncertainties in estimating I_r , the equilibrium pore pressure and the effect of an initial dilatory response on calculating t_{50} , other methods should be applied to confirm the results for c_h .

Additional published methods for estimating the coefficient of consolidation from a piezocone test are described in Burns and Mayne (1998, 2002), Jones and Van Zyl (1981), Robertson et al. (1992) and Sully et al. (1999).

A summary of the pore pressure dissipation tests and dissipation plots are presented in the relevant appendix.

ASTM D5778-12, 2012, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils", ASTM, West Conshohocken, US.

Burns, S.E. and Mayne, P.W., 1998, "Monotonic and dilatory pore pressure decay during piezocone tests", Canadian Geotechnical Journal 26 (4): 1063-1073.

Burns, S.E. and Mayne, P.W., 2002, "Analytical cavity expansion-critical state model cone dissipation in fine-grained soils", Soils & Foundations, Vol. 42(2): 131-137.

Jones, G.A. and Van Zyl, D.J.A., 1981, "The piezometer probe: a useful investigation tool", Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Vol. 3, Stockholm: 489-495.

Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice", Blackie Academic and Professional.

Mayne, P.W., 2013, "Evaluating yield stress of soils from laboratory consolidation and in-situ cone penetration tests", Sound Geotechnical Research to Practice (Holtz Volume) GSP 230, ASCE, Reston/VA: 406-420.

Mayne, P.W., 2014, "Interpretation of geotechnical parameters from seismic piezocone tests", CPT'14 Keynote Address, Las Vegas, NV, May 2014.

Mayne, P.W. and Peuchen, J., 2012, "Unit weight trends with cone resistance in soft to firm clays", Geotechnical and Geophysical Site Characterization *4*, Vol. 1 (Proc. ISC-4, Pernambuco), CRC Press, London: 903-910.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.

Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geotechnical Journal, Volume 27: 151-158.

Robertson, P.K., 2009, "Interpretation of cone penetration tests – a unified approach", Canadian Geotechnical Journal, Volume 46: 1337-1355.

Robertson, P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.J.M. and Gillespie, D.G., 1992, "Estimating coefficient of consolidation from piezocone tests", Canadian Geotechnical Journal, 29(4): 551-557.

Sully, J.P., Robertson, P.K., Campanella, R.G. and Woeller, D.J., 1999, "An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils", Canadian Geotechnical Journal, 36(2): 369-381.

Teh, C.I., and Houlsby, G.T., 1991, "An analytical study of the cone penetration test in clay", Geotechnique, 41(1): 17-34.

The appendices listed below are included in the report:

- Cone Penetration Test Summary and Standard Cone Penetration Test Plots
- Advanced Cone Penetration Test Plots with Ic, Su(Nkt), Phi and N1(60)Ic
- Soil Behaviour Type (SBT) Scatter Plots
- Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

Cone Penetration Test Summary and Standard Cone Penetration Test Plots

Job No:19-05024Client:Golder AssociatesProject:Golden Plough LodgeStart Date:10-Apr-2019End Date:11-Apr-2019

CONE PENETRATION TEST SUMMARY									
Sounding ID	File Name	Date	Cone	Assumed Phreatic Surface ¹ (m)	Final Depth (m)	Northing ² (m)	Easting ² (m)	Refer to Notation Number	
CPT19-16-4	19-05024_CP19-16-4	11-Apr-2019	311:T1000F10U500	2.0	9.200	4872774	724849		
CPT19-18-1	19-05024_CP19-18-1	10-Apr-2019	311:T1000F10U500	2.0	10.775	4872808	724808		
CPT19-18-3	19-05024_CP19-18-3	10-Apr-2019	311:T1000F10U500	2.0	11.850	4872829	724851		
CPT19-18-5	19-05024_CP19-18-5	10-Apr-2019	311:T1000F10U500	2.0	11.650	4872804	724850		
CPT19-18-6	19-05024_CP19-18-6	10-Apr-2019	311:T1000F10U500	2.0	8.125	4872769	724821		
CPT19-18-7	19-05024_CP19-18-7	10-Apr-2019	311:T1000F10U500	2.0	11.450	4872788	724868		
CPT19-18-9	19-05024_CP19-18-9	10-Apr-2019	311:T1000F10U500	2.0	6.100	4872754	724864		
CPT19-18-12	19-05024_CP19-18-12	10-Apr-2019	311:T1000F10U500	2.0	3.350	4872724	724875		

1. The assumed phreatic surface was based on dynamic pore pressure responses, unless otherwise noted. Hydrostatic conditions were assumed for the calculated parameters. 2. The coordinates were acquired using consumer grade GPS equipment in datum: WGS84 / UTM Zone 17 North.

Overplot Item: Oueq Assumed Ueq Consistentiation, Ueq achieved Dissipation, Ueq achieved Dissipation, Ueq achieved Dissipation, Ueq assumed — Hydrostatic Line The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Overplot Item: Oueq Assumed Ueq Dissipation, Ueq achieved Dissipation, Ueq not achieved Dissipation, Ueq assumed — H The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Overplot Item: Oueq Assumed Ueq Consistentiation, Ueq achieved Dissipation, Ueq achieved Dissipation, Ueq achieved Dissipation, Ueq assumed — Hydrostatic Line The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Advanced Cone Penetration Test Plots with Ic, Su(Nkt), Phi and N1(60)Ic

Soil Behaviour Type (SBT) Scatter Plots

Job No: 19-05024 Date: 2019-04-11 15:21 Site: Golden Plough Lodge, Cobourg, ON

Sounding: CPT19-16-4 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 10:47 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-1 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 09:30 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-3 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 11:48 Site: Golden Plough Lodge, Cobourg, ON

Sounding: CPT19-18-5 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 12:46 Site: Golden Plough Lodge, Cobourg, ON

Sounding: CPT19-18-6 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 13:42 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-7 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 14:45 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-9 Cone: 311:T1000F10U500

Job No: 19-05024 Date: 2019-04-10 15:49 Site: Golden Plough Lodge, Cobourg, ON

Sounding: CPT19-18-12 Cone: 311:T1000F10U500

Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

Client:

Project:

Start Date:

End Date:

19-05024 Golder Associates Golden Plough Lodge 10-Apr-2019 11-Apr-2019

CPTu PORE PRESSURE DISSIPATION SUMMARY											
Sounding ID	File Name	Cone Area (cm ²)	Duration (s)	Test Depth (m)	Equilibrium Pore Pressure U _{eq} (m)	Estimated Equilibrium Pore Pressure U _{eq} (m)	Calculated Phreatic Surface (m)	Estimated Phreatic Surface (m)	t ₅₀ ° (s)	Assumed Rigidity Index (I _r)	c _h ^b (cm²/min)
CPT19-16-4	19-05024_CP19-16-4	10	350	9.200	Not Achieved	7.2		2.0	172	100	2.7
CPT19-18-1	19-05024_CP19-18-1	10	600	5.500	Not Achieved	3.5		2.0	528	100	0.9
CPT19-18-1	19-05024_CP19-18-1	10	365	8.500	Not Achieved	6.5		2.0	219	100	2.1
CPT19-18-1	19-05024_CP19-18-1	10	300	10.775	Not Achieved	8.8		2.0	69	100	6.7
CPT19-18-3	19-05024_CP19-18-3	10	505	7.500	Not Achieved	5.5		2.0	313	100	1.5
CPT19-18-3	19-05024_CP19-18-3	10	405	10.500	Not Achieved	8.5		2.0	210	100	2.2
CPT19-18-3	19-05024_CP19-18-3	10	300	11.850	Not Achieved	9.9		2.0	160	100	2.9
CPT19-18-5	19-05024_CP19-18-5	10	450	5.500	Not Achieved	3.5		2.0	327	100	1.4
CPT19-18-5	19-05024_CP19-18-5	10	300	9.500	Not Achieved	7.5		2.0	90	100	5.2
CPT19-18-5	19-05024_CP19-18-5	10	300	11.650	Not Achieved	9.7		2.0	179	100	2.6
CPT19-18-6	19-05024_CP19-18-6	10	305	6.500	Not Achieved	4.5		2.0	100	100	4.7
CPT19-18-6	19-05024_CP19-18-6	10	335	8.075	Not Achieved	6.1		2.0	157	100	3.0
CPT19-18-6	19-05024_CP19-18-6	10	235	8.125	Not Achieved						
CPT19-18-7	19-05024_CP19-18-7	10	300	7.000	Not Achieved	5.0		2.0	115	100	4.1
CPT19-18-7	19-05024_CP19-18-7	10	315	9.500	Not Achieved	7.5		2.0	49	100	9.5
CPT19-18-7	19-05024_CP19-18-7	10	300	11.450	Not Achieved						
CPT19-18-9	19-05024_CP19-18-9	10	300	3.000	Not Achieved						
CPT19-18-9	19-05024_CP19-18-9	10	600	6.050	Not Achieved	4.1		2.0	352	100	1.3
CPT19-18-12	19-05024_CP19-18-12	10	300	3.350	Not Achieved						

a. Time is relative to where umax occurred.

b. Houlsby and Teh, 1991.

Job No: 19-05024 Date: 04/11/2019 15:21 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-16-4 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 10:47 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-1 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 10:47 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-1 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 10:47 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-1 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 09:30 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-3 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 09:30 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-3 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 09:30 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-3 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 11:48 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-5 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 11:48 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-5 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 11:48 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-5 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 4/10/2019 12:46 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-6 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 4/10/2019 12:46 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-6 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 4/10/2019 12:46 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-6 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 13:42 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-7 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 13:42 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-7 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 13:42 Site: Golden Plough Lodge, Cobourg, ON

Sounding: CPT19-18-7 Cone: 311:T1000F10U500 Area=10 cm²

Duration: 300.0 s

u Final: 16.5 m

Job No: 19-05024 Date: 04/10/2019 14:45 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-9 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 14:45 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-9 Cone: 311:T1000F10U500 Area=10 cm²

Job No: 19-05024 Date: 04/10/2019 15:49 Site: Golden Plough Lodge, Cobourg, ON Sounding: CPT19-18-12 Cone: 311:T1000F10U500 Area=10 cm²

APPENDIX C

Analytical Laboratory Testing

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD. 100 SCOTIA COURT WHITBY, ON L1N8Y6 (905) 723-2727

ATTENTION TO: m battley

PROJECT: 18111688

AGAT WORK ORDER: 18T423686

SOIL ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Jan 04, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 5

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18T423686 PROJECT: 18111688

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:

ATTENTION TO: m battley

SAMPLED BY:

			О.	Reg. 153(511) - Metal	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2018-12-24								[DATE REPORT	ED: 2019-01-04	
		SAMPLE DES	CRIPTION:	BH18-1 Sa2	BH18-3 Sa1	BH18-10 Sa2	BH18-10 Sa5	BH18-11 Sa4	BH18-13 Sa1	BH18-13 Sa3	BH18-20 Sa1
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	2018-12-18	2018-12-20	2018-12-20	2018-12-20	2018-12-17	2018-12-17	2018-12-17	2018-12-21
Parameter	Unit	G/S	RDL	9809141	9809143	9809144	9809145	9809146	9809147	9809148	9809149
Antimony	µg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	2	2	2	2	2	2	2	5
Barium	µg/g	220	2	90	97	163	106	105	158	34	56
Beryllium	µg/g	2.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5
Boron	µg/g	36	5	<5	<5	6	6	6	5	<5	6
Boron (Hot Water Soluble)	µg/g	NA	0.10	0.15	0.18	<0.10	<0.10	<0.10	<0.10	<0.10	0.32
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	70	2	19	19	29	20	20	28	7	11
Cobalt	µg/g	21	0.5	5.5	5.7	9.4	7.2	7.2	8.8	2.5	3.7
Copper	µg/g	92	1	9	15	21	14	15	18	5	10
Lead	µg/g	120	1	6	9	6	5	5	6	2	43
Molybdenum	µg/g	2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	µg/g	82	1	10	11	18	14	14	18	5	7
Selenium	µg/g	1.5	0.4	<0.4	1.1	<0.4	<0.4	<0.4	1.0	<0.4	0.6
Silver	µg/g	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	µg/g	2.5	0.5	0.6	0.7	0.6	<0.5	0.5	0.6	<0.5	<0.5
Vanadium	µg/g	86	1	33	32	46	33	34	46	14	20
Zinc	µg/g	290	5	34	47	61	45	44	56	15	52
Chromium VI	µg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11
Electrical Conductivity	mS/cm	0.57	0.005	0.161	0.175	0.139	0.140	0.147	0.131	0.093	0.168
Sodium Adsorption Ratio	NA	2.4	NA	0.377	0.240	0.240	0.479	0.643	0.133	0.376	0.118
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.46	7.52	7.63	7.66	7.41	7.46	7.81	7.47

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9809141-9809149 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Iris Verastegui

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 18111688

SAMPLING SITE:

AGAT WORK ORDER: 18T423686

ATTENTION TO: m battley

SAMPLED BY:

Soil Analysis															
RPT Date: Jan 04, 2019			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inc	rganics (Soi	il)													
Antimony	9809141	9809141	<0.8	<0.8	NA	< 0.8	110%	70%	130%	89%	80%	120%	102%	70%	130%
Arsenic	9809141	9809141	2	2	NA	< 1	104%	70%	130%	100%	80%	120%	100%	70%	130%
Barium	9809141	9809141	90	93	2.8%	< 2	96%	70%	130%	102%	80%	120%	90%	70%	130%
Beryllium	9809141	9809141	<0.5	<0.5	NA	< 0.5	97%	70%	130%	100%	80%	120%	90%	70%	130%
Boron	9809141	9809141	<5	<5	NA	< 5	114%	70%	130%	96%	80%	120%	76%	70%	130%
Boron (Hot Water Soluble)	9809141	9809141	0.15	0.13	NA	< 0.10	103%	60%	140%	95%	70%	130%	89%	60%	140%
Cadmium	9809141	9809141	<0.5	<0.5	NA	< 0.5	97%	70%	130%	101%	80%	120%	100%	70%	130%
Chromium	9809141	9809141	19	19	0.1%	< 2	86%	70%	130%	99%	80%	120%	102%	70%	130%
Cobalt	9809141	9809141	5.5	5.6	2.2%	< 0.5	88%	70%	130%	97%	80%	120%	93%	70%	130%
Copper	9809141	9809141	9	10	4.3%	< 1	92%	70%	130%	111%	80%	120%	102%	70%	130%
Lead	9809141	9809141	6	6	1.6%	< 1	97%	70%	130%	107%	80%	120%	104%	70%	130%
Molybdenum	9809141	9809141	<0.5	<0.5	NA	< 0.5	96%	70%	130%	108%	80%	120%	105%	70%	130%
Nickel	9809141	9809141	10	11	2.2%	< 1	93%	70%	130%	100%	80%	120%	94%	70%	130%
Selenium	9809141	9809141	<0.4	<0.4	NA	< 0.4	101%	70%	130%	100%	80%	120%	100%	70%	130%
Silver	9809141	9809141	<0.2	<0.2	NA	< 0.2	92%	70%	130%	104%	80%	120%	97%	70%	130%
Thallium	9809141	9809141	<0.4	<0.4	NA	< 0.4	98%	70%	130%	98%	80%	120%	97%	70%	130%
Uranium	9809141	9809141	0.6	0.6	NA	< 0.5	107%	70%	130%	110%	80%	120%	107%	70%	130%
Vanadium	9809141	9809141	33	34	2.5%	< 1	91%	70%	130%	101%	80%	120%	96%	70%	130%
Zinc	9809141	9809141	34	36	4.3%	< 5	96%	70%	130%	106%	80%	120%	104%	70%	130%
Chromium VI	9808888		<0.2	<0.2	NA	< 0.2	104%	70%	130%	109%	80%	120%	115%	70%	130%
Cyanide	9809252		<0.040	<0.040	NA	< 0.040	100%	70%	130%	91%	80%	120%	105%	70%	130%
Mercury	9809141	9809141	<0.10	<0.10	NA	< 0.10	99%	70%	130%	92%	80%	120%	103%	70%	130%
Electrical Conductivity	9809141	9809141	0.161	0.168	4.3%	< 0.005	93%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9809141	9809141	0.377	0.364	3.4%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	9807492		7.81	7.79	0.3%	NA	101%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 18111688

SAMPLING SITE:

AGAT WORK ORDER: 18T423686

ATTENTION TO: m battley

SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis										
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES							
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER							
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER							
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS							
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER							
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-84 6010C	⁶ ICP/OES							
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER							
Chain of Custody Record	T Laborat	OTIES	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	Laboratory Use Only Work Order #: 187423686 Cooler Quantity: 181761001 Arrival Temperatures: 6.016.516.5						
--	---	--	---	---						
Report Information: Company: Colder Associates Contact: Colder Associates Address: IOU Scotta Crt Multipy ON LIN Phone: Phone: Miscontary Reports to be sent to: 1. Email: mibertlay Ogolder 2. Email: eric - wolinsky Ogold Ogold	дү <u>с</u> ах:_905-7232182 сү:Ющ	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Indicate One Ind/Com Agriculture Soil Texture (check One) Coarse Fine	No Regulatory Requirement Use Regulation 558 CCME Prov. Water Quality Objectives (PWQO) One Indicate One	Custody Seal Intact: Yes No NA Notes:						
Project Information: Project: IS() 688 Site Location: Sampled By: Yusuf Solimourg AGAT Quote #: Please note: If quotation number is not provide Invoice Information: Company: Contact:	0: d, client will be billed full price for analysis, Bill To Same: Yes in No 🗆	Is this submission for a Record of Site Condition? Yes No Sample Matrix Legend B Biota GW Ground Water O Oil P Paint	Report Guideline on Certificate of Analysis Yes No O. Reg 153 O. Reg 153 Reput No BH Certificate of Analysis No	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM						
Contact: Address: Email: Email: Sample Identification Date Same BH 18~1 Sq. J. BH 18~3 Sq. J. BH 18~3 Sq. J. BH 18~10 Substrate BH 18-11 Substrate	te Time #of Sa oled Sampled Containers M VIR J:14pm I So VIR I:020m I So VIR 8:029m I So VIR 8:429m I So VIR 8:429m I So	S Soil SD Sediment SW Surface Water mple Comments/ atrix Special Instructions c	× × Field Filtered - × × × <th>Notatiles: Notatiles: Notatil</th>	Notatiles: Notatil						
BH <	His Lio7pm I Si His Lio7pm I So His Lio7pm I So His Lio7pm I So His Lio7pm I So His Lio2pm I I His Lio2pm I I	Samples Received By(Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	Managen Mill Vex. Date	Image: Image Page of Image Page of						

ਨਾ ਸਾਂ ਤੇ, ਸਾਂ ਨਾ ਸਾਂ ਤੇ ਨਾ ਸਾਂ ਤੇ ਨਾ

 $\tau =$

CLIENT NAME: GOLDER ASSOCIATES LTD. 100 SCOTIA COURT WHITBY, ON L1N8Y6 (905) 723-2727

ATTENTION TO: Michael Beatley

PROJECT: 18111688

AGAT WORK ORDER: 19T426856

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jan 17, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

INOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 5

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Subscription of Alberta (ESAA)
 AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 19T426856 PROJECT: 18111688 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:

ATTENTION TO: Michael Beatley

SAMPLED BY:

	Corrosivity Package												
DATE RECEIVED: 2019-01-10						DATE REPORTED: 2019-01-17							
	SAMPLE DESCRIPTION:			18-3 Sa4	18-13 Sa3								
		SAMPLE TYPE: DATE SAMPLED: 2		Soil	Soil								
				2018-12-20	2018-12-20								
Parameter	Unit	G/S	RDL	9825768	9825769								
Sulfide (S2-)	%		0.05	<0.05	<0.05								
Chloride (2:1)	µg/g	NA	2	8	4								
Sulphate (2:1)	µg/g		2	9	7								
pH (2:1)	pH Units		NA	8.18	8.40								
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	0.139	0.093								
Resistivity (2:1)	ohm.cm		1	7190	10800								
Redox Potential (2:1)	mV		5	194	181								

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9825768-9825769 EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

*Sulphide analyzed at AGAT 5623 McAdam

PI note: Redox Potential is not an accredited parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 18111688

SAMPLING SITE:

AGAT WORK ORDER: 19T426856

ATTENTION TO: Michael Beatley

SAMPLED BY:

Soil Analysis

RPT Date: Jan 17, 2019		DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
								Lower	Upper		Lower	Upper],	Lower	Upper
Corrosivity Package															
Sulfide (S2-)	9825768 9	9825768	<0.05	<0.05	NA	< 0.05	98%	80%	120%						
Chloride (2:1)	9825768 9	9825768	8	8	NA	< 2	106%	80%	120%	108%	80%	120%	104%	70%	130%
Sulphate (2:1)	9825768 9	9825768	9	10	NA	< 2	106%	80%	120%	103%	80%	120%	95%	70%	130%
pH (2:1)	9825768 9	9825768	8.18	8.15	0.4%	NA	100%	90%	110%						
Electrical Conductivity (2:1)	9825768 9	9825768	0.139	0.133	4.4%	< 0.005	97%	90%	110%						
Redox Potential (2:1)	9825768 §	9825768	194	192	1.0%	< 5	105%	70%	130%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

Page 3 of 5

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 18111688

SAMPLING SITE

AGAT WORK ORDER: 19T426856

ATTENTION TO: Michael Beatley

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	PARAMETER AGAT S.O.P		ANALYTICAL TECHNIQUE		
Soil Analysis	•	· ·			
Sulfide (S2-)	MIN-200-12025	ASTM E1915-09	GRAVIMETRIC		
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH		
Sulphate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH		
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER		
Electrical Conductivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER		
Resistivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION		
Redox Potential (2:1)		McKeague 4.12 & SM 2580 B	REDOX POTENTIAL ELECTRODE		

Chain of Custody Peor			abor	rato	ories Ph	N : 905.7:	5 1ississau 12.5100 wel	835 Coope ga, Ontario Fax: 905. Dearth.aga	ers Avenue 5 L4Z 1Y2 712.5122 tlabs.com	Laboratory Use Only Work Order #: 197426856 Cooler Quantity: 371551							
Chain of Custody Record If this is a Drinking Water sample, please of the drink of this is a Drinking Water sample, please of the drink of the					ee Drinking Water Chain of Custody Form (pota Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Ind/Com Res/Park Agriculture Soil Texture (check one) Coarse Fine Is this submission for a Record of Site Condition? Yes No Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment	potable water intended for human consumption) No Regulatory Requirement er Use Regulation 558 ittary CCME intary Prov. Water Quality Objectives (PWQO) Other Indicate One Indicate One Report Guideline on Certificate of Analysis No VO Ves No NO Signature Signature Signature O. Reg 153 Signature VO Signature Signature Signature Signature			Cooler Quantity: Arrival Temperatures: Custody Seal Intact: Custody Seal Intact: Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business Days 0 R Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM					I IN/A			
Sample Identification 8-3 544 8-13 543	Date Sampled 2018-12-20 2018-12-17	Time Sampled 13:05 13:08	# of Containers	Samp Matri Soi (Soi (le Comments/ Y/ x Special Instructions	A Metals and I	All Metals		Full Metals S Regulation/C	CCME Fractic	ABNS	PAHS	PCBs: D Tota	Organochlori	Sewer Use	Corrosi	
reples Relinquished By (Print Name and Sign:		Dato DOIQ-D	i~04 [[Ľ	<u> </u>	Samples Received By (Print Name and Sign):				Date	9	Time		1				
IPIER Relinquited By (Print Name and Stat)		Pato Alto		D'4	Samples Received B) (Print Name and Sign)				Date	 1	Time			Nº:	Pag T	ge <u></u> of 0401	84

APPENDIX D

Figures D1 to D4 – Oedometer Test Results

cc			ST SUMN 2435M	IARY		FIGU	FIGURE D1			
		S/	AMPLE IDE	NTIFICAT	ION					
Project Number		18111688			Sample Number		TW			
Borehole Number		18-1			Sample Depth, m		7.01-7.47			
			TEST CON	IDITIONS						
Test Type Oedometer Numbe Date Started Date Completed	Labora r	atory Standard 3 04/23/2019 05/09/2019			Load Duration, hr		24			
		SAMPLE DIME	NSIONS AN	D PROPE	RTIES - INITIAL					
Sample Height, cm Sample Diameter, o Area, cm ² Volume, cm ³ Water Content, % Wet Mass, g Dry Mass, g	2.53 6.33 31.48 79.74 17.99 172.68 146.35			Unit Weight, kN/m Dry Unit Weight, k Specific Gravity, n Solids Height, cm Volume of Solids, Volume of Voids, o Degree of Saturat	³ IN/m ³ neasured cm ³ cm ³ ion, %	$\begin{array}{cccc} & & 21.24 \\ /m^3 & & 18.00 \\ asured & & 2.74 \\ & & & 1.697 \\ n^3 & & 53.41 \\ n^3 & & 26.33 \\ n & & & 100.0 \end{array}$				
			TEST COMP	UTATION	IS					
	Corr.		Average							
Stress	Height	Void	Height	t ₉₀	CV.	mv	k			
<u>kPa</u>	cm	Ratio	cm	sec	cm²/s	m²/kN	cm/s			
0.00	2.533	0.493	2.533	440		0.475.04	0.045.07			
5.91	2.529	0.491	2.531	113	1.20E-02	2.47E-04	2.91E-07			
10.70	2.525	0.488	2.527	279	4.85E-03	3.30E-04	1.57E-07			
20.58	2.516	0.483	2.521	231	5.83E-03	3.68E-04	2.10E-07			
40.05	2.505	0.477	2.511	230	5.81E-03	2.21E-04	1.26E-07			
79.03	2.491	0.468	2.498	214	6.18E-03	1.44E-04	8.71E-08			
40.10	2.491	0.468	2.491							
10.70	2.493	0.469	2.492							
40.29	2.491	0.468	2.492	47	2.80E-02	1.87E-05	5.13E-08			
79.15	2.488	0.467	2.490	74	1.78E-02	3.05E-05	5.30E-08			
156.86	2.471	0.457	2.480	113	1.15E-02	8.59E-05	9.71E-08			
312.17	2.444	0.440	2.458	240	5.33E-03	7.07E-05	3.69E-08			
623.03	2.411	0.421	2.427	360	3.47E-03	4.11E-05	1.40E-08			
1245.20	2.370	0.397	2,391	208	5.82E-03	2.61E-05	1.49E-08			
2487.60	2.324	0.370	2.347	240	4.87E-03	1.47E-05	7.00E-09			
623.03	2,330	0.373	2.327	.						
156.86	2.336	0.377	2.333							
40 10	2 344	0.381	2 340							
10.77	2.351	0.386	2.347							
Note: Consolidation loadi cv and k are appro>	ng and unloa	ding schedule as ased on t_{90} estim	ssigned by the	e client. uare Root c	of Time Method (AST	MD2435/2435	M)			
		SAMPLE DIM	ENSIONS AN		ERTIES - FINAL					
Sample Height, cm		2.35			Unit Weight. kN/m	3	22.20			
Sample Diameter	m	6.33			Dry Unit Weight	N/m ³	19.39			
Area. cm ²		31.48			Specific Gravity. n	neasured	2.74			
Volume cm ³		74.02			Solids Height, cm		1,697			
Water Content %		14 51			Volume of Solide	cm ³	53 41			
Wet Mass n		167 50			Volume of Voide	cm ³	20.61			
Dry Mass, g		1/6 25				GITI	20.01			
Diyividəs, y		140.00		·	1		0			
ed By: LH			Golder A	ssocia	tes		Checked By: AN			

CONSOLIDATION TEST SUMMARY

ASTM D2435/D2435M

FIGURE D2

1 of 4

			S	AMPLE IDE	NTIFICATI	ON			
	Project Number		18111688			Sample Number		TW	
			10-3	TEST CO		Sample Depth, II		10.30-10.82	
	Test Type	Labora	atory Standard	1201 001		Load Duration b		24	
	Oedometer Number	Labore	2				27		
	Date Started		04/23/2019						
	Date Completed		05/09/2019						
		:	SAMPLE DIME	INSIONS AN	ID PROPE	RTIES - INITIAL			
	Sample Height, cm		2.54			Unit Weight, kN/r	n ³	22.25	
	Sample Diameter, c	m	6.35			Dry Unit Weight,	kN/m ³	19.67	
	Area, cm ²		31.65			Specific Gravity,	measured	2.72	
	Volume, cm ³		80.29			Solids Height, cm	1	1.8/1	
	Water Content, %		13.14			Volume of Solids	, cm [°]	59.20 21.00	
	Dry Mass d		161.03			Degree of Satura	tion %	100.3	
	Dry Maoo, g		101.00	TEST COM				100.0	
				TEST COMP	UTATION	5			
		Corr.		Average					
	Stress	Height	Void	Height	t ₉₀	cv.	mv	k	
	kPa	cm	Ratio	cm	sec	cm ² /s	m²/kN	cm/s	
	0.00	2.537	0.356	2.537	0500				
	0.03	2.499	0.330	2.518	2089	5.19E-04 8 70E 04	2.48E-03	1.20E-07	
	10.09	2.490	0.331	2.494	1500	0.79E-04 9.70E-04	7.07E-04	0.70E-00 6.16E.09	
	20.45	2.472	0.321	2.401	1168	0.70L-04	1.232-04	5 36E 08	
	40.00	2.447	0.300	2.409	712	1.10E-03	4.90E-04	5.30E-08	
	10.00	2.410	0.292	2.432	112	1.70E-03	2.99E-04	5.17E-00	
	40.00	2.410	0.293	2.410					
	30.80	2.420	0.294	2.419	83	1 50 5 02	2 165 05	3 17 - 08	
	79.69	2.415	0.293	2.420	112	1.000-02	2.10L-05	J.17 L-00	
	10.02	2.410	0.291	2.417	700	1.10E-02	4.17E-03	4.40E-00	
	211 22	2.303	0.274	2.399	790 501	1.04E-00	1.02E-04	2.40E-00	
	STI.ZS 620.65	2.341	0.232	2.302	200	2.30E-03	1.00E-04	2.44E-00	
	020.00	2.300	0.233	2.324	390	2.94E-03	4.40E-00	1.20E-00	
	1239.20	2.200	0.213	2.207	107	5.93E-03	2.43E-05	1.41E-00	
	2470.11	2.229	0.192	2.249	109	5.07E-03	1.25E-05	0.95E-09	
	020.00	2.200	0.194	2.231					
	100.00	2.230	0.190	2.230					
	40.00	2.244	0.200	2.241					
	10.04	2.249	0.202	2.240					
	Note:								
	Consolidation loadir	ig and unloa	ding schedule a	ssigned by the	e client.				
	cv and k are approx	imate only b	ased on t ₉₀ estim	nated from Sq	uare Root o	f Time Method (AS	FMD2435/2435	M)	
				ENSIONS A		RTIES - FINAL			
	Sample Height, cm		2.25			Unit Weight kN/r	n ³	24.11	
	Sample Diameter. c	6.35			Dry Unit Weight	 kN/m ³	22.19		
	Area. cm ²	31.65			Specific Gravity	measured	2.72		
	Volume, cm ³		71.16			Solids Height, cm		1.871	
	Water Content. %		8.66			Volume of Solids	cm ³	59.20	
	Wet Mass. a		174.98			Volume of Voids	11.96		
	Dry Mass. d		161.03						
Prenare	d Rv: I H			Golder A	leenniat	20		Checked By:	
, iopaie	ч шу. шт				Joural			Gricolled Dy. p	- IVI

CONSOLIDATION TEST SUMMARY

ASTM D2435/D2435M

FIGURE D3

1 of 4

			~				1		
			S	AWIPLE IDE		UN			
	Project Number		18111688			Sample Number		TW	
	Borehole Number		18-6			Sample Depth, m		10.36-10.82	
				TEST CON	DITIONS				
	Test Type	Labora	atorv Standard			Load Duration. h		24	
	Oedometer Numbe	r	, 1			,			
	Date Started		04/23/2019						
	Date Completed		05/07/2019						
			SAMPLE DIME	NSIONS AN	ID PROPE	RTIES - INITIAL			
	Sample Height, cm		2.56			Unit Weight, kN/r	n ³	19.45	
	Sample Diameter, o	m	6.35			Dry Unit Weight,	kN/m ³	15.58	
	Area, cm ²		31.67			Specific Gravity,	measured	2.74	
	Volume, cm ³		80.91			Solids Height, cm	1	1.481	
	Water Content, %		24.84			Volume of Solids	, cm²	46.91	
	Wet Mass, g		160.46			Volume of Voids,	cm ³	34.01	
	Dry Mass, g		128.53			Degree of Salura	uon, %	93.9	
				TEST COMP	UTATION	S			
		Corr.		Average					
	Stress	Height	Void	Height	t ₉₀	CV.	mv	k	
	kPa	cm	Ratio	cm	sec	cm²/s	m²/kN	cm/s	
	0.00	2.555	0.725	2.555					
	5.09	2.557	0.726	2.556					
	10.63	2.558	0.727	2.557					
	20.45	2.557	0.726	2.558	28	4.95E-02	5.18E-05	2.51E-07	
	40.05	2.553	0.723	2.555	83	1.67E-02	8.39E-05	1.37E-07	
	78.56	2.542	0.716	2.547	97	1.42E-02	1.10E-04	1.53E-07	
	40.12	2.544	0.717	2.543					
	10.63	2.546	0.719	2.545					
	40.05	2.545	0.718	2.545	106	1.30E-02	1.60E-05	2.03E-08	
	78.67	2.541	0.716	2.543	83	1.65E-02	3.55E-05	5.74E-08	
	155.76	2.528	0.706	2.534	113	1.21E-02	6.96E-05	8.21E-08	
	310.37	2.505	0.691	2,516	97	1.38E-02	5.67E-05	7.69E-08	
	619.62	2 472	0.669	2 489	208	6.31E-03	4 15E-05	2.57E-08	
	1237 71	2 4 1 6	0.631	2.400	240	5.28E-03	3.60E-05	1.86E-08	
	2473 73	2.329	0.572	2.372	208	5 74E-03	2 74E-05	1.54E-08	
	610.62	2.020	0.583	2.372	200	0.742-00	2.142-00	1.042-00	
	155 76	2.344	0.000	2.337					
	20.90	2.372	0.001	2.330					
	39.60 10.63	2.402 2.418	0.622	2.307					
	10.00	2.410	0.000	2.410					
	Note:								
	Consolidation loadi	ng and unloa	ding schedule a	ssigned by the	e client.				
	cv and k are approx	kimate only b	ased on t ₉₀ estim	nated from Sq	uare Root o	f Time Method (AS	FMD2435/2435I	M)	
	specimen swelled u	inder 20.45k	Pa						
	-								
	Complete List Li		SAMPLE DIM	ENSIONS AI	ND PROPE	RTIES - FINAL	3	00.00	
	Sample Height, cm	2.42			Unit Weight, kN/r	nĭ	20.26		
		m	6.35			Dry Unit Weight,	KN/mĭ	16.46	
	Area, cm ²	31.67			Specific Gravity,	measured	2.74		
	Volume, cm [°]		76.59			1	1.481		
	Water Content, %		23.13			Volume of Solids	, cm ຼັ	46.91	
	wet Mass, g		158.26			Volume of Voids,	cm °	29.68	
_	Dry Mass, g		128.53						
Prepar	ea By: LH			Golder A	ssocial	es		Checked By: A	۹M

CONSOLIDATION TEST SUMMARY

ASTM D2435/D2435M

FIGURE D4

1 of 4

			S	AMPLE IDE	NTIFICATI	ON			
Project N	lumber		18111688			Sample Number		TW	
Borenoie	e Number		18-7	TEAT OOL		Sample Depth, It	1	1.41-1.92	
				TEST CON	DITIONS				
Test Typ	е	Labora	atory Standard			Load Duration, h	r	24	
Oedome	ter Number		5						
Date Sta	rted		04/23/2019						
Date Cor	npieted								
O a manufactu	1	•					3	00.07	
Sample I	Height, cm		1.90			Unit Weight, KN/r	n°	20.27	
			0.33			Dry Unit Weight, Specific Gravity	KIN/M measured	2 74	
Area, cm Volumo	cm ³		59.84			Solids Height cm	neasuleu	1 171	
Water Co	ontent %		22 55			Volume of Solids	cm ³	36.84	
Wet Mas	is. a		123.69			Volume of Voids	cm ³	23.00	
Dry Mass	s, g		100.93			Degree of Satura	ition, %	99.0	
	, U			TEST COMP		S	,		
		Corr				-			
Str		Height	Void	Height	tee	CV	mv	k	
		cm	Patio	cm	1 90	cv.	² // NI	r cm/s	
			0.624	1 002	560	cm /s	m /kn	CITI/S	
6.0		1.902	0.024	1.902					
10.1	9 <u>4</u>	1 903	0.626	1.903	332	2.31E-03	1 10F-04	2 49E-08	
20	76 ·	1 903	0.625	1 903	187	2.01E-00 4 11E-03	4 23E-05	1 70E-08	
40	32 ·	1 900	0.623	1 901	113	6 78E-03	5.99E-05	3.98E-08	
79	27 ·	1 895	0.619	1 898	187	4 08E-03	6.64E-05	2.66E-08	
40	51	1 896	0.619	1.896	107	4.002 00	0.042 00	2.002 00	
10.	94	1 896	0.620	1.896					
40	26	1.896	0.619	1.896	185	4.12E-03	1.22E-05	4.92E-09	
79.3		1.895	0.618	1.895	148	5.14E-03	1.52E-05	7.68E-09	
157	.15	1.890	0.614	1.892	231	3 29E-03	3.09E-05	9.94E-09	
312	.61	1.883	0.608	1.886	145	5.20E-03	2 45E-05	1.25E-08	
623	.84	1.870	0.597	1.877	113	6.61E-03	2.09E-05	1.35E-08	
1246	5.03	1.833	0.565	1.852	146	4.98E-03	3.20E-05	1.56E-08	
2490	0.90	1.783	0.523	1.808	148	4.68E-03	2.09E-05	9.59E-09	
623	.84	1.786	0.526	1.785					
157	.03	1.796	0.533	1.791					
40.	51	1.806	0.542	1.801					
10.9	97	1.815	0.550	1.810					
Note:									
Consolid	ation loading	and unloa	ding schedule a	ssigned by the	client				
cv and k	are approxim	ate only b	ased on the estin	nated from So	uare Root o	f Time Method (AS	TMD2435/2435	M	
specimer	n swelled und	er 10.94ki	авоа он 190 осан Ра					,	
op o om 101			-						
			SAMPLE DIM	ENSIONS AI	ND PROPE	RTIES - FINAL	3		
Sample I	Height, cm		1.81			Unit Weight, kN/r	ກໍ	20.93	
Sample [Sample Diameter, cm 6.33					Dry Unit Weight,	kN/m°	17.34	
Area, cm	Area, cm ² 31.46					Specific Gravity,	measured	2.74	
Volume,	cm [×]		57.09			1 3	1.171		
Water Co	ontent, %		20.72			Volume of Solids	, cm ្ ្	36.84	
Wet Mas	s, g		121.84			Volume of Voids,	cm °	20.26	
Dry Mass	s, g		100.93						
Prepared By: LH				Golder A	ssociat	es		Checked By: A	M

golder.com