

 GTA WEST OFFICE (CORPORATE OFFICE)

 9358 GOREWAY DRIVE

 BRAMPTON, ONTARIO L6P 0M7

 T: (905) 794-0600

 F: (905) 794-0611

GTA EAST OFFICE 1600 CHAMPLAIN AVENUE WHITBY, ONTARIO L1N 9Y9 T: (289) 315-3680

March 3rd 2020 Town of Cobourg Public Works Division 740 Division Street, Building 7 Cobourg, Ontario K9A 0H6

Attn: Mr. Terry Hoekstra, C.E.T. Manager of Engineering and Capital Projects

Re: Traffic Impact Brief Proposed Residential Development 377 William Street Town of Cobourg Our File No. W20003

Dear Mr. Hoekstra:

This letter documents the results of our traffic impact analysis for the proposed Residential Development at 377 William Street, in the Town of Cobourg. We have assessed the existing and future total traffic conditions at the intersections of William Street at University Avenue West and William Street at King Street West along with the future total traffic conditions at the proposed Site Access at William Street intersection.

It is anticipated that the development will be fully built-out and occupied by 2022. As a result, a horizon year of 2027 was analyzed, representing a five (5) year post built-out horizon.

The findings are summarized in the following sections.

THE PROPOSED DEVELOPMENT AND THE STUDY AREA

The Subject Development is located immediately west of William Street and is approximately 75 metres south of University Avenue West, in the Town of Cobourg. The total area of the property is 1.66 acres.

The Subject Development is surrounded by the following land uses:

- To the north, existing residential with University Avenue West beyond,
- To the east, William Street with existing commercial and an existing place of worship beyond,
- To the south, existing residential,
- To the west, existing residential with Margaret Street beyond.

The location of the proposed Residential Development is illustrated in Figure 1.

Page 2 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg

Our File No. W20003

THE PROPOSED DEVELOPMENT AND THE STUDY AREA (CONT'D)

The proposed Residential Development comprises ten (10) freehold townhouse units and four (4) semidetached units. The proposed Residential Development will be serviced by a private road that connects with William Street. Six (6) visitor parking spaces (includes one (1) accessible parking space) and 28 resident parking spaces are provided by the proposed Residential Development. The visitor parking spaces are adjacent to the private roadway and are located at the west end of the Subject Property. For each dwelling unit, a parking space is provided in a private driveway and a parking space is provided in a private garage.

It is anticipated that the development will be fully built-out by 2022. The proposed Site Plan is provided in **Figure 2**.

For the traffic impact analysis, the existing road network comprises William Street, University Avenue West and King Street West.

William Street

Within the vicinity of the proposed Residential Development, William Street is a north-south arterial road under the jurisdiction of the Town of Cobourg. William Street is a four (4) lane roadway north of King Street West and is a two (2) lane roadway south of King Street West. Within the vicinity of the proposed Residential Development, William Street has an urban cross-section with an assumed speed limit of 50 km/h and with pedestrian sidewalks on both sides of the roadway. It is anticipated that the roadway will not be widened by the horizon year¹.

¹ Transportation Master Plan for The Town of Cobourg, HDR, August 2011.

Page 3 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development

377 William Street Town of Cobourg Our File No. W20003

THE PROPOSED DEVELOPMENT AND THE STUDY AREA (CONT'D)

University Avenue West

University Avenue West is an arterial road east of William Street and is a local road west of William Street. To the east, the roadway connects with Cottesmore Avenue. To the west, the roadway terminates at approximately 150 metres west of William Street. University Avenue West is a two (2) lane roadway with an urban cross-section. Within the vicinity of the proposed Residential Development, the roadway has a posted speed limit of 40 km/h. Within the vicinity of the proposed Residential Development, east of William Street, the roadway has pedestrian sidewalks on both sides. West of William Street, a pedestrian sidewalk is provided on the north side of the roadway. It is anticipated that the roadway will not be widened by the horizon year.

King Street West

King Street West is an arterial road east of William Street and is a collector road west of William Street. Within the vicinity of William Street, King Street West is a two (2) lane roadway with an urban cross-section and with a posted speed limit of 50 km/h. Within the vicinity of William Street, pedestrian sidewalks are provided on both sides of the roadway and the roadway is shared between bicycles and automobiles in both directions. It is anticipated that the roadway will not be widened by the horizon year.

Page 4 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

EXISTING TRAFFIC

The Existing (2020) Traffic Volumes for the intersections of William Street at University Avenue West and William Street at King Street West are based on 2020 Peak Hour Traffic Counts conducted by Ontario Traffic Inc. (OTI) on Tuesday January 28, 2020. In order to capture both Peak Hours (i.e. A.M. Peak Hour and the P.M. Peak Hour) of the adjacent street traffic, counts were conducted from 7:00 a.m. to 9:00 a.m. and from 4:00 p.m. to 6:00 p.m. For the intersection of William Street at University Avenue West, the A.M. and P.M. Peak Hour traffic volumes occurred between 8:00 a.m. and 9:00 a.m. and between 4:15 p.m. For the intersection of William Street at King Street West, the A.M. and P.M. Peak Hour traffic volumes occurred between 8:00 a.m. and between 4:00 p.m. and 5:15 p.m. For the intersection of William Street at King Street West, the A.M. and P.M. Peak Hour traffic volumes occurred between 8:00 a.m. and between 4:00 p.m. and 5:10 p.m.

The turning movement counts provided by Ontario Traffic Inc. (OTI) are provided in **Appendix A** and the Existing (2020) Traffic Volumes used in the analysis are illustrated in **Figures 3 and 4** for the A.M. and the P.M. Peak Hours.

EXISTING (2020) TRAFFIC ANALYSIS

The Existing (2020) Peak Hour traffic volumes are provided in **Figures 3 and 4** and were analyzed using the procedures of the Highway Capacity Manual 2000/2010 as employed by SYNCHRO (version 9.0) software². The Peak Hour Factor (PHF) for the intersections of William Street at University Avenue West and William Street at King Street West were derived from the available turning movement counts based on 15 minute intervals.

The intersection of William Street at University Avenue West was analyzed as an actuated uncoordinated signalized intersection with William Street as the main street. The signal timing plans used in the analysis are based on the signal timing plans that we have received from the Town of Cobourg, which are provided in **Appendix B**. The lane configuration used in the analysis comprises: a left, a through and a shared through-right turning lane at the northbound and southbound approaches; a shared left-through-right turning lane at the eastbound approach; and a shared through-left and a right turning lane at the westbound approach.

² Synchro 9 Traffic Signal Optimization and Simulation Modeling Software, Version 9, Trafficware Corporation, 2014.

Page 5 March 3rd 2020

 Attn:
 Mr. Terry Hoekstra, C.E.T.

 Manager of Engineering and Capital Projects

 Re:
 Traffic Impact Brief

 Proposed Residential Development

 377 William Street

Town of Cobourg Our File No. W20003

EXISTING (2020) TRAFFIC ANALYSIS (CONT'D)

The intersection of William Street at King Street West was analyzed as an actuated uncoordinated signalized intersection with William Street as the main street. The signal timing plans were optimized in the analysis with the intersection comprised of a protected northbound left turn, a protected southbound left turn and a protected westbound right turn. The lane configuration used in the analysis comprises: a left and a shared through-right turning lane at the northbound and southbound approaches; and a shared through-left and a right turning lane at the eastbound and westbound approaches.

The lane configurations and the intersection control types used in the analysis are provided in **Figure 13**.

The results of the analysis are summarized in **Table 1** and the related calculations are provided in **Appendix D**. The Level of Service (LOS) definition for signalized and un-signalized intersections are included in **Appendix C** for reference.

Page 6 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg

Our File No. W20003

EXISTING (2020) TRAFFIC ANALYSIS (CONT'D)

Table 1. Existing (202				/l. Peak Hou	r		P.M	I. Peak Hour	
					95 th %				95 th %
	Turning			Delay ¹	Queue			Delay ¹	Queue
Intersection	Turning Movement	v/c	LOS	(seconds)	(m)	v/c	LOS	(seconds)	(m)
Intersection	Overall	0.47	B	10.6	n/a	0.52	B	10.9	n/a
	NBL	0.01	A	7.0	0.8	0.01	A	6.8	1.3
	NBT	0.23	B	17.5	21.8	0.25	B	17.8	25.6
William Street	NBR	0.23	B	17.5	21.8	0.25	B	17.8	25.6
at	EBL	0.12	B	19.5	12.4	0.10	B	19.5	11.1
at	EBT	0.12	B	19.5	12.4	0.10	B	19.5	11.1
University Avenue	EBR	0.12	В	19.5	12.4	0.10	B	19.5	11.1
West	SBL	0.42	А	8.5	27.5	0.49	А	9.3	35.7
vvest	SBT	0.14	А	8.6	17.6	0.15	А	8.5	20.5
(Signalized)	SBR	0.14	А	8.6	17.6	0.15	А	8.5	20.5
	WBL	0.08	В	19.8	8.6	0.12	С	20.4	13.4
	WBT	0.08	В	19.8	8.6	0.12	С	20.4	13.4
	WBR	0.47	А	5.9	14.0	0.52	А	6.2	18.1
	Overall	0.25	Α	10.0	n/a	0.21	В	10.1	n/a
	NBL	0.01	Α	6.4	1.8	0.01	А	6.3	1.8
William Street	NBT	0.13	В	13.9	14.2	0.07	В	13.2	10.4
william Street	NBR	0.13	В	13.9	14.2	0.07	В	13.2	10.4
at	EBL	0.25	В	16.0	19.3	0.21	В	15.0	17.5
	EBT	0.25	В	16.0	19.3	0.21	В	15.0	17.5
King Street	EBR	0.04	А	0.2	0.0	0.01	А	0.0	0.0
West	SBL	0.21	Α	7.1	17.2	0.17	А	6.9	14.8
	SBT	0.09	Α	9.8	15.4	0.06	А	9.9	11.6
(Signalized)	SBR	0.09	А	9.8	15.4	0.06	А	9.9	11.6
	WBL	0.10	В	14.4	10.1	0.10	В	14.0	10.2
	WBT	0.10	В	14.4	10.1	0.10	В	14.0	10.2
	WBR	0.22	Α	7.1	19.1	0.13	А	6.6	12.1

Table 1: Existing (2020) Traffic – Level of Service

Note 1: Delays are measured in seconds per vehicle

Page 7 March 3rd 2020

 Attn:
 Mr. Terry Hoekstra, C.E.T.

 Manager of Engineering and Capital Projects

 Re:
 Traffic Impact Brief

 Proposed Residential Development

 377 William Street

 Town of Cobourg

Our File No. W20003

EXISTING (2020) TRAFFIC ANALYSIS (CONT'D)

The Existing (2020) Traffic Analysis indicates that the signalized intersection of William Street at University Avenue West operates at an overall Level of Service "B" during the A.M. and P.M. Peak Hours. During the P.M. Peak Hour, the queue length at the shared westbound through-left turning lane may result in a spillback of vehicles into the right turning lane. However, all of the turning movements operate at a Level of Service "B" or better during the A.M. Peak Hour and at a Level of Service "C" or better during the P.M. Peak Hour.

The Existing (2020) Traffic Analysis indicates that the signalized intersection of William Street at King Street West operates at an overall Level of Service "A" during the A.M. Peak Hour and at an overall Level of Service "B" during P.M. Peak Hour. All of the turning movements operate at a Level of Service "B" or better during the A.M. and P.M. Peak Hours.

ANTICIPATED BACKGROUND DEVELOPMENT

This Traffic Impact Brief will consider one (1) anticipated background development within the vicinity of the proposed Residential Development.

A residential development is being proposed at 315-325 University Avenue West, which is immediately west of William Street and is immediately south of University Avenue West. Details regarding the anticipated background development and its site-generated traffic volumes were taken from its Transportation Impact Study³. Excerpts from the Transportation Impact Study are provided in **Appendix E** for reference.

The anticipated background development is an infill development, which will replace four (4) dwelling units with driveways connected to University Avenue West. The anticipated background development comprises 71 apartment units and a full-moves access at University Avenue West. In addition, the anticipated background development will share the existing right-in/right-out access at 387 William Street with an existing two-storey residential home.

³ Transportation Impact Study – Proposed Residential Development – 315-325 University Avenue West, LEA Consulting Ltd., April 2019

Page 8 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

ANTICIPATED BACKGROUND DEVELOPMENT (CONT'D)

The Transportation Impact Study applied the trip rates from the ITE Trip Generation Manual (ITE 2017) for a Multi-Family Housing (Mid-Rise) Land Use (Land Use 221) and the number of apartment units to determine the total number of site-generated trips⁴.

The anticipated background development is expected to generate a total of 23 trips (6 inbound trips and 17 outbound trips) during the A.M. Peak Hour and 29 trips (17 inbound trips and 12 outbound trips) during the P.M. Peak Hour.

The trip distribution and trip assignment for the site-generated volumes from the anticipated background development were taken from the Transportation Impact Study. However, the trip assignment did not include the intersection of William Street at King Street West. For the intersection of William Street at King Street West, this Traffic Impact Brief will adopt the Transportation Impact Study's approach by determining the trip assignment based on the existing traffic patterns. The trip distribution and trip assignment used in this Traffic Impact Brief for the site-generated volumes from the anticipated background development is provided in **Figures 5 and 6**.

FUTURE BACKGROUND TRAFFIC GROWTH

A conservative growth rate of 2% per year was assumed for William Street, University Avenue West and King Street West. The traffic growth rates were used to project the Existing (2020) Traffic Volumes from 2020 to 2027.

For the intersection of William Street at University Avenue West, the growth rate for William Street was applied to the through movements along William Street and the inbound volumes from the westbound approach of University Avenue West and the growth rate for University Avenue West was applied to the inbound volumes from William Street.

⁴ Trip Generation Manual, 10th Edition, Institute of Transportation Engineers, 2017.

Page 9 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

FUTURE BACKGROUND TRAFFIC GROWTH (CONT'D)

For the intersection of William Street at King Street West, the growth rate for William Street was applied to the through movements along William Street and the inbound volumes from the westbound approach of King Street West and the growth rate for King Street West was applied to the inbound volumes from William Street.

FUTURE (2027) TOTAL BACKGROUND TRAFFIC VOLUMES

The Future (2027) Total Background Traffic Volumes are based on the Existing (2020) Traffic Volumes with a growth in background traffic for seven (7) years plus the anticipated trips from the anticipated background development at 315-325 University Avenue West.

The Future (2027) Total Background Traffic Volumes during the A.M. and P.M. Peak Hours are illustrated in **Figures 7 and 8**.

TRIP GENERATION

The fitted curve equations from the ITE Trip Generation Manual (ITE 2017) were used for the A.M. and P.M. Peak Hours of street traffic for the proposed freehold townhouse units and the proposed semidetached units (Land Use 220 – Multifamily Housing (Low-Rise)), quoted on the basis of trips per dwelling unit.

The fitted curve equations and the percentages of incoming and outgoing trips in the A.M. and P.M. Peak Hours for the land use of the development are provided in **Table 2**.

Page 10 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

TRIP GENERATION (CONT'D)

Table 2. Trin Generati	ion Equations and Inhound	and Outbound Percentages
Table 2. Trip Generati	ion Equations and moound	and Outbound Percentages

ITE Land Use	A.M. Peak H	our		P.M. Peak Hour				
	Fitted Curve Equation	% In	% Out	Fitted Curve Equation	% In	% Out		
Multifamily Housing (Low-Rise) (LU 220)	Ln (T) = 0.95 Ln(X) – 0.51	23%	77%	Ln (T) = 0.89 Ln(X) – 0.02	63%	37%		

Note: T represents the total number of trips and X represents the total number of dwelling units.

TOTAL SITE-GENERATED TRIPS

The resulting number of trips generated is determined by the fitted curve equations provided in **Table 2** and the number of dwelling units. The proposed Residential Development comprises 14 dwelling units.

The resulting total number of trips to be generated in the A.M. and P.M. Peak Hours are summarized in **Table 3**.

Table 3: Site-Generated Trips

ITE Land Use	Dwelling		Peak Ho Ij. Stree		P.M. Peak Hour (Adj. Street)			
	Units	Trips In	Trips Out	Total	Trips In	Trips Out		
Multifamily Housing (Low-Rise)	14	2	5	7	6	4	10	

The proposed Residential Development is expected to generate 7 trips during the A.M. Peak Hour (2 inbound trips and 5 outbound trips) and 10 trips during the P.M. Peak Hour (6 inbound trips and 4 outbound trips).

Page 11 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

TRIP DISTRIBUTION AND ASSIGNMENT

The assumed trip distribution and assignment is based on the existing traffic patterns, which was derived from the turning movement counts taken for the intersections of William Street at University Avenue West and William Street at King Street West.

Figures 9 and 10 illustrate the Site-Generated Traffic volumes used in the analysis.

FUTURE (2027) TOTAL TRAFFIC ANALYSIS

The Future (2027) Total Traffic Volumes are based on the Future (2027) Total Background Traffic Volumes plus the site-generated trips from the proposed Residential Development. **Figures 11 and 12** illustrate the Future (2027) Total Traffic Volumes for the existing William Street at University Avenue West and William Street at King Street West intersections along with the proposed Site Access at William Street intersection.

For the William Street at University Avenue West and William Street at King Street West intersections, the lane configurations and the signal timing plans used in the Existing (2020) Traffic Analysis are used in the Future (2027) Total Traffic Analysis.

For the proposed Site Access at William Street intersection, the intersection was analyzed as an unsignalized intersection with a stop-control at the eastbound approach. The lane configuration used in the analysis comprises: a shared through-left and a through lane at the northbound approach; a through and a shared through-right turning lane at the southbound approach; and a shared left-right turning lane at the westbound approach.

The lane configurations and the intersection control types used in the analysis are provided in Figure 13.

The Future (2027) Total Traffic Conditions were analyzed using the procedures of the Highway Capacity Manual 2000/2010 as employed by SYNCHRO (version 9.0) software. The results of the analysis are summarized in **Table 4** and the related calculations are provided in **Appendix D**.

Page 12 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

FUTURE (2027) TOTAL TRAFFIC ANALYSIS (CONT'D)

Table 4:	Future (2027)	Total Traffic	– Level of Service
----------	---------------	---------------	--------------------

			A.N	/I. Peak Hou	r		P.M	. Peak Hour	
					95 th %				95 th %
	Turning			Delay ¹	Queue			Delay ¹	Queue
Intersection	Movement	V/C	LOS	(seconds)	(m)	V/C	LOS	(seconds)	(m)
	Overall	0.52	В	11.0	n/a	0.57	В	11.4	n/a
	NBL	0.01	Α	6.8	1.4	0.01	А	6.9	1.8
Millions Church	NBT	0.27	В	18.0	25.0	0.30	В	18.6	29.2
William Street	NBR	0.27	В	18.0	25.0	0.30	В	18.6	29.2
at	EBL	0.15	В	19.5	14.2	0.12	В	19.5	12.3
	EBT	0.15	В	19.5	14.2	0.12	В	19.5	12.3
University Avenue	EBR	0.15	В	19.5	14.2	0.12	В	19.5	12.3
West	SBL	0.49	Α	9.2	31.9	0.57	В	10.3	41.7
west	SBT	0.16	Α	8.7	20.2	0.17	А	8.6	23.7
(Signalized)	SBR	0.16	Α	8.7	20.2	0.17	А	8.6	23.7
	WBL	0.09	С	20.1	9.0	0.14	С	21.0	15.2
	WBT	0.09	С	20.1	9.0	0.14	С	21.0	15.2
	WBR	0.52	Α	6.1	14.6	0.57	А	6.5	19.4
	Overall	0.28	В	10.1	n/a	0.21	В	10.0	n/a
	NBL	0.01	А	6.4	1.8	0.01	А	6.3	1.8
Williams Streat	NBT	0.18	В	14.4	15.9	0.08	В	13.3	12.0
William Street	NBR	0.18	В	14.4	15.9	0.08	В	13.3	12.0
at	EBL	0.25	В	16.1	19.3	0.21	В	15.0	17.5
	EBT	0.25	В	16.1	19.3	0.21	В	15.0	17.5
King Street	EBR	0.04	Α	0.2	0.0	0.01	А	0.0	0.0
West	SBL	0.28	Α	7.6	20.4	0.20	А	7.2	17.1
	SBT	0.13	В	10.1	17.4	0.07	В	10.0	13.1
(Signalized)	SBR	0.13	В	10.1	17.4	0.07	В	10.0	13.1
	WBL	0.10	В	14.4	10.1	0.10	В	14.0	10.2
	WBT	0.10	В	14.4	10.1	0.10	В	14.0	10.2
	WBR	0.25	Α	7.3	22.1	0.15	А	6.7	13.9

Note 1: Delays are measured in seconds per vehicle

Page 13 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

FUTURE (2027) TOTAL TRAFFIC ANALYSIS (CONT'D)

			Α.Ν	/I. Peak Hou	r	P.M. Peak Hour					
Intersection	Turning Movement/ Approach	v/c	LOS	Delay ¹ (seconds)	95 th % Queue (m)	v/c	LOS	Delay ¹ (seconds)	95 th % Queue (m)		
Proposed	Overall	0.11	Α	0.1	n/a	0.13	Α	0.1	n/a		
Site Access	NBL	0.00	А	0.1	0.0	0.00	А	0.3	0.0		
at	NBT	0.11	А	0.0	0.0	0.07	А	0.0	0.0		
William Street	EB Approach	0.01	В	10.1	0.2	0.01	А	9.9	0.1		
	SBT	0.11	А	0.0	0.0	0.13	А	0.0	0.0		
(Un-signalized)	SBR	0.06	А	0.0	0.0	0.07	А	0.0	0.0		

Table 4: Future (2027) Total Traffic – Level of Service - Continued

Note 1: Delays are measured in seconds per vehicle

The Future (2027) Total Traffic Analysis indicates that the signalized intersection of William Street at University Avenue West will continue to operate at an overall Level of Service "B" during the A.M. and P.M. Peak Hours. During the P.M. Peak Hour, the queue lengths at the southbound left and the shared westbound through-left turning lanes may result in a spillback of vehicles into the adjacent lane. However, all of the turning movements will operate at a Level of Service "C" or better during the A.M. and P.M. Peak Hours.

The Future (2027) Total Traffic Analysis indicates that the signalized intersection of William Street at King Street West will begin to operate at an overall Level of Service "B" during the A.M. Peak Hour and will continue to operate at an overall Level of Service "B" during the P.M. Peak Hour. All of the turning movements will continue to operate at a Level of Service "B" or better during the A.M. and P.M. Peak Hours.

Page 14 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development

377 William Street Town of Cobourg Our File No. W20003

FUTURE (2027) TOTAL TRAFFIC ANALYSIS (CONT'D)

The Future (2027) Total Traffic Analysis indicates that the un-signalized proposed Site Access at William Street intersection will operate at an overall Level of Service "A" during the A.M. and P.M. Peak Hours. During the A.M. and P.M. Peak Hours, the delays at the shared through-left turning lane in the northbound approach are minimal. In addition, the worse-case for the eastbound approach is an average delay of 10.1 seconds per vehicle. A maximum queue of one (1) vehicle is expected for all of the turning movements during the A.M. and P.M. Peak Hours. Therefore, the northbound left turning vehicles will not interfere with the eastbound left turning vehicles leaving the site.

Page 15 March 3rd 2020

Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development
377 William Street
Town of Cobourg
Our File No. W20003

SUMMARY

The proposed Residential Development is expected to generate 7 trips during the A.M. Peak Hour (2 inbound trips and 5 outbound trips) and 10 trips during the P.M. Peak Hour (6 inbound trips and 4 outbound trips).

By the 2027 horizon year, during the A.M. and P.M. Peak Hours, the existing William Street at University Avenue West and William Street at King Street West intersections will operate at acceptable Levels of Service.

For the proposed Site Access at William Street intersection, the following recommendations should be considered for the 2027 horizon year:

• An eastbound approach that comprises a shared left-right turning lane that is stop-controlled.

The recommended lane configuration and intersection control type for the proposed Site Access at William Street intersection is illustrated in **Figure 13**.

By the 2027 horizon year, the traffic analysis indicates that during the A.M. and P.M. Peak Hours the queue lengths at the northbound left turning lane for the intersection of William Street at University Avenue West will not interfere with the eastbound left turning vehicles at the proposed Site Access at William Street.

Page 16 March 3rd 2020

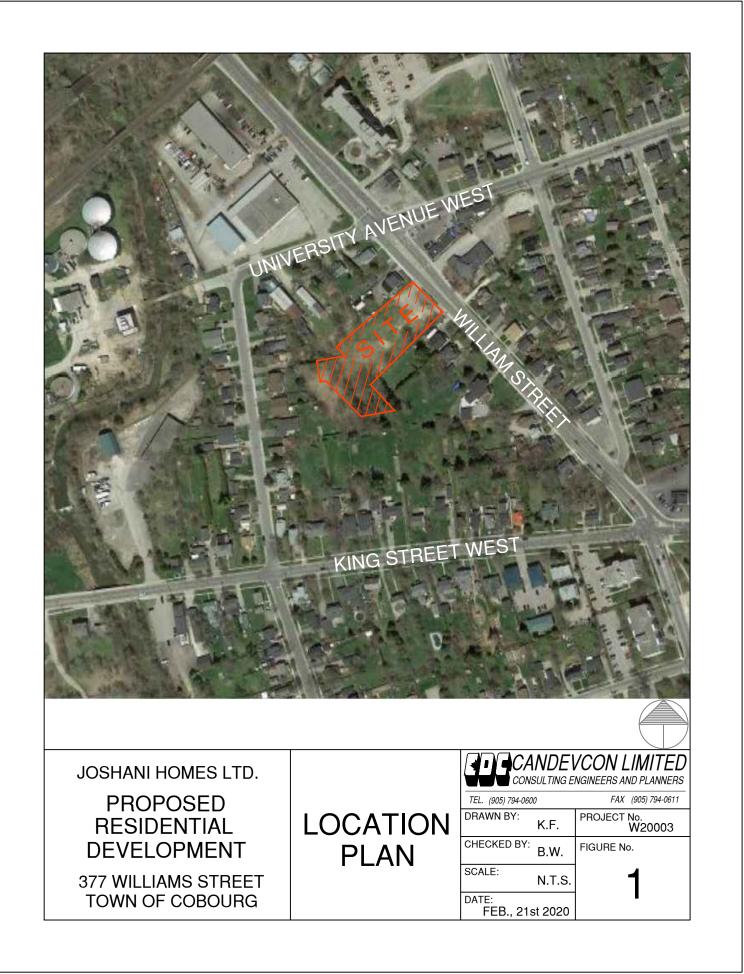
Attn:Mr. Terry Hoekstra, C.E.T.
Manager of Engineering and Capital ProjectsRe:Traffic Impact Brief
Proposed Residential Development

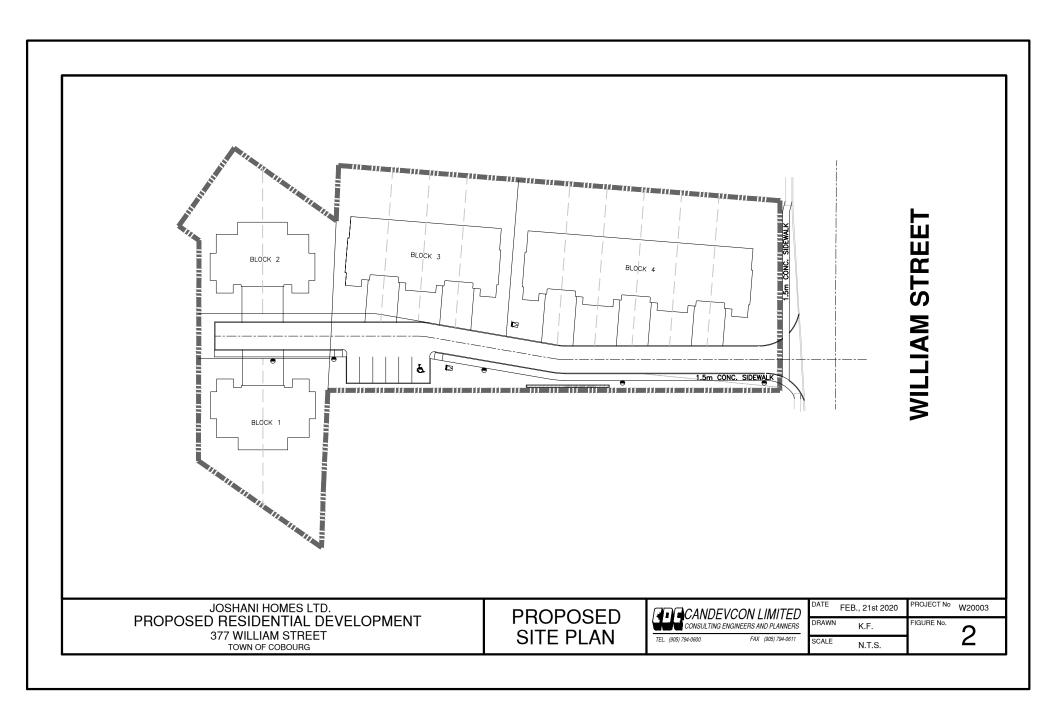
777 William Street Town of Cobourg Our File No. W20003

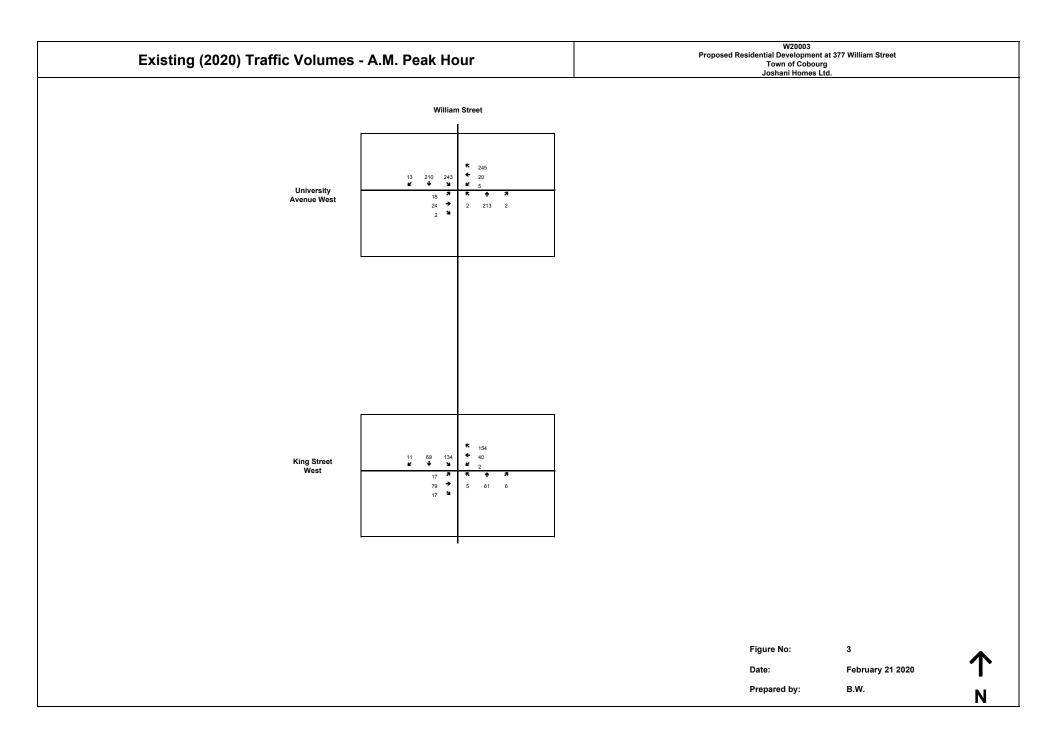
We trust that this Traffic Impact Brief supports the proposed Residential Development. However, if you have any questions please advise.

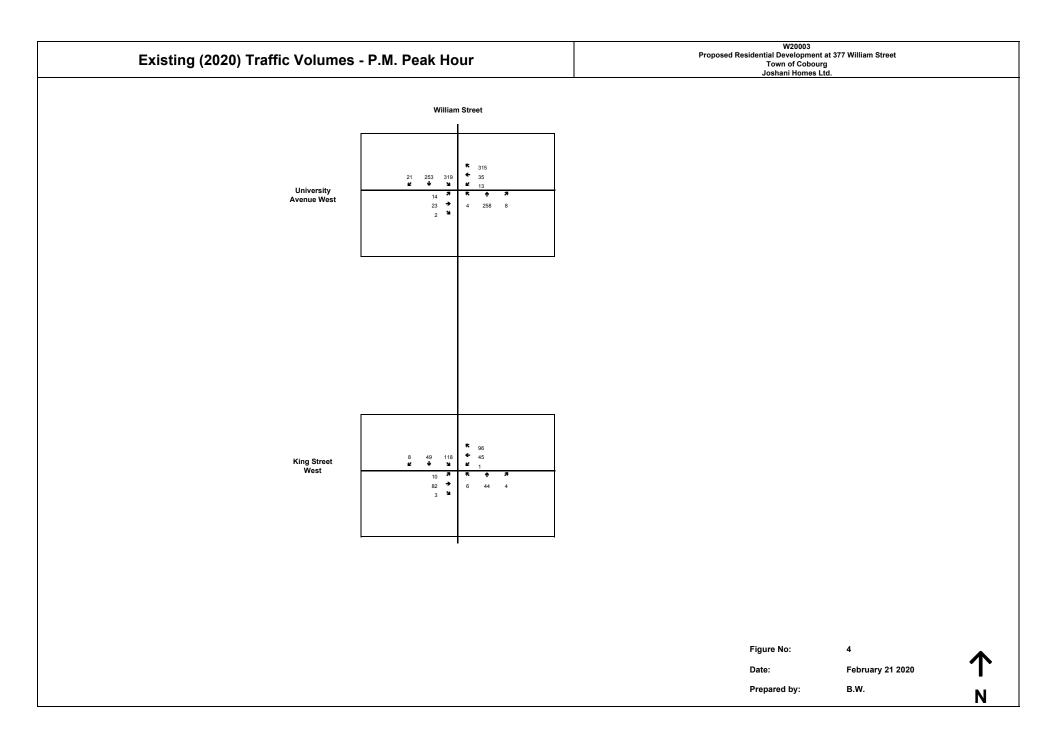
Yours truly, CANDEVCON LIMITED

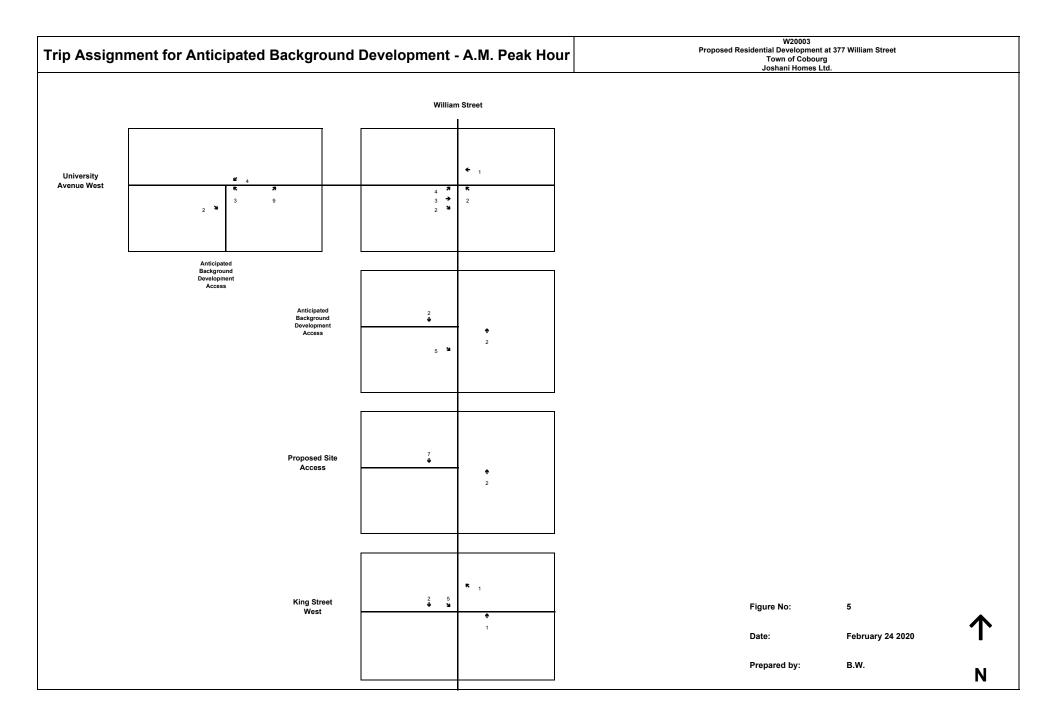
Brian Wong, P. Eng. Intermediate Transportation Engineer

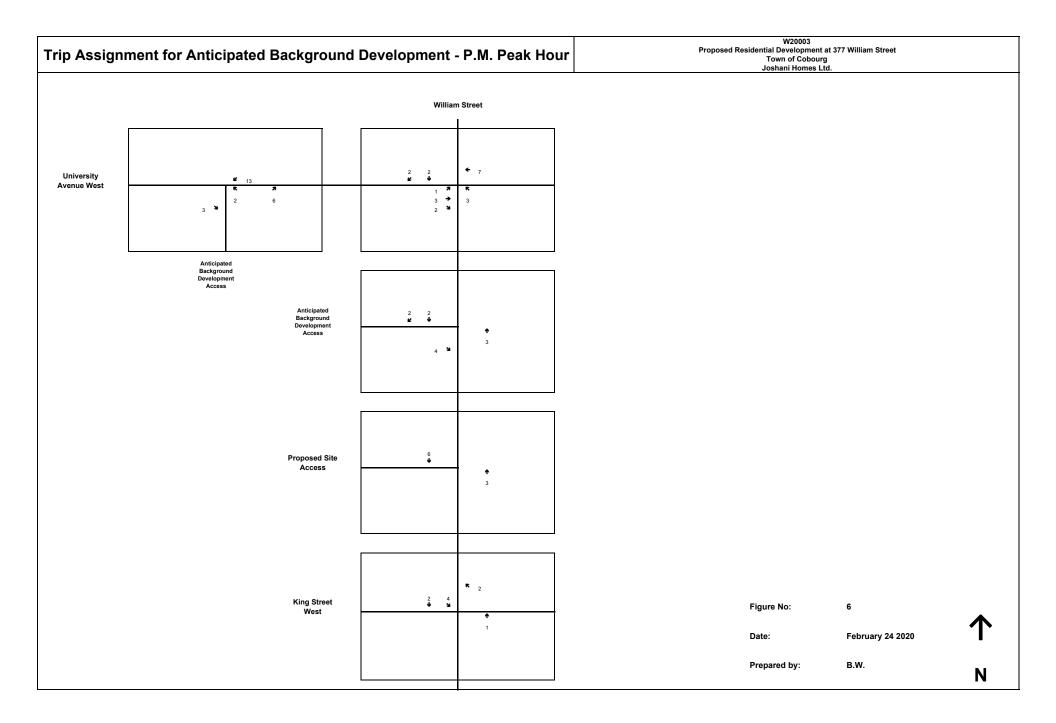

Attachment: Figure 1 – Location Plan,

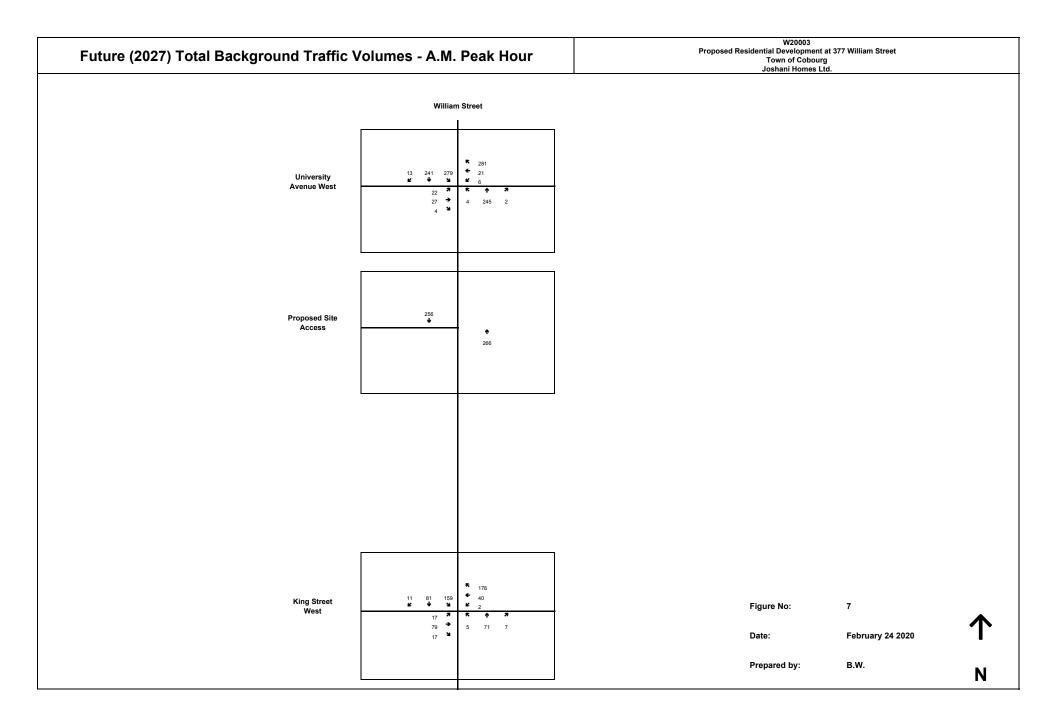

D. LEE 100083628

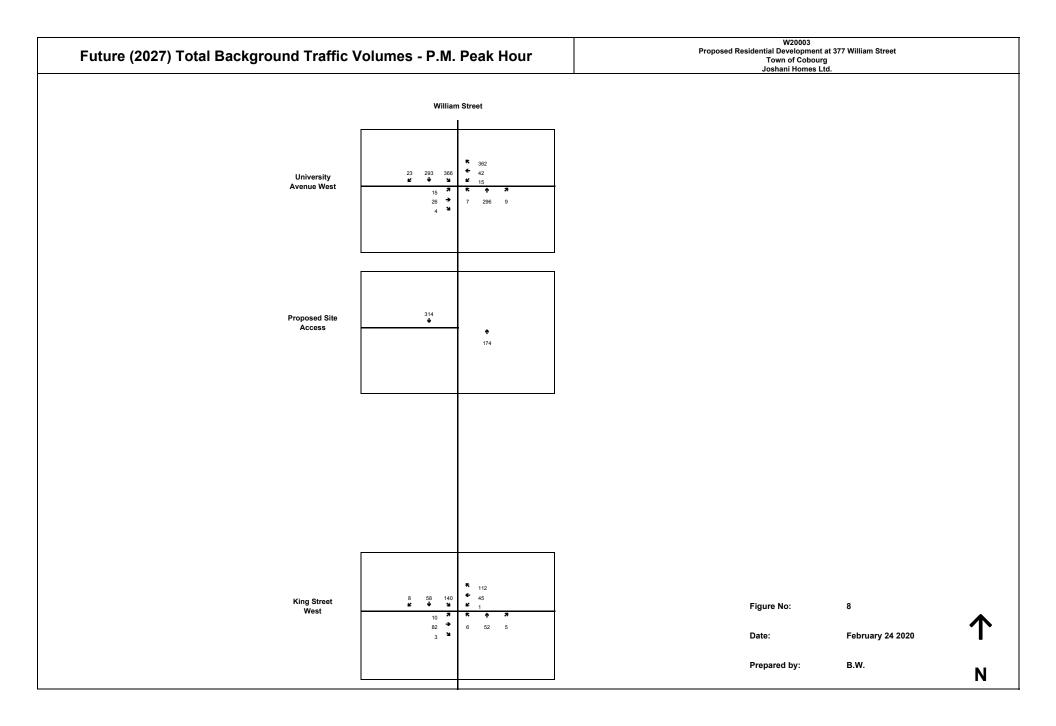

David Lee, P. Eng. Project Manager

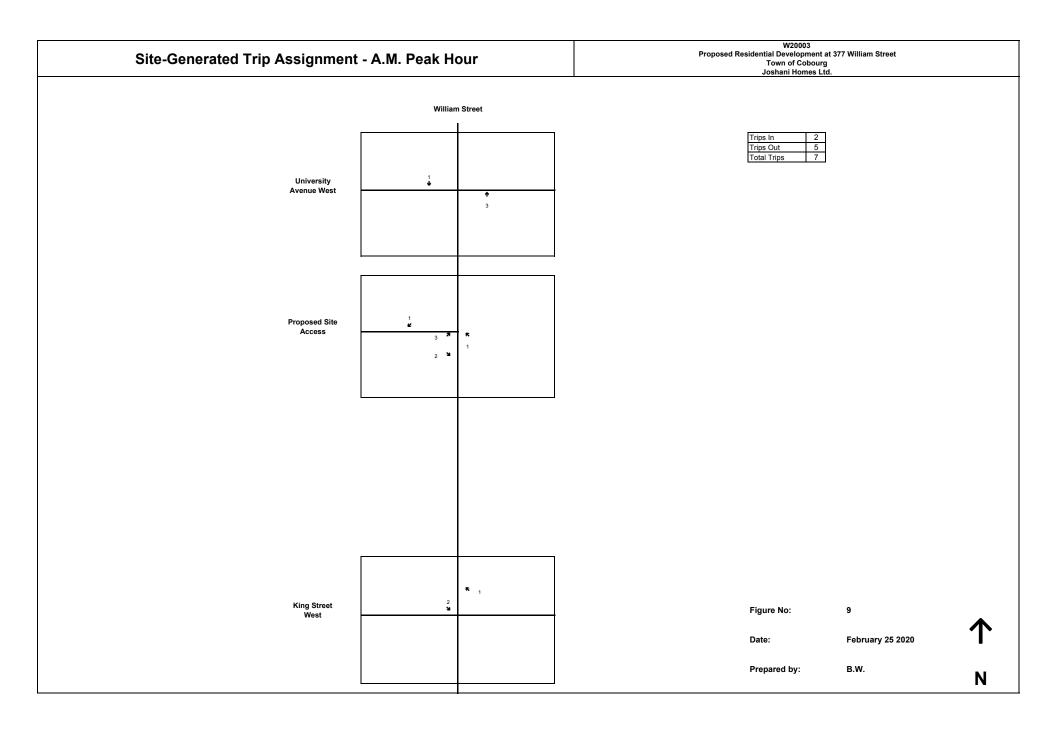

Figure 2 – Proposed Site Plan,
Figures 3 and 4 – Existing (2020) Traffic Volumes,
Figures 5 and 6 – Trip Assignment for Anticipated Background Development,
Figures 7 and 8 – Future (2027) Total Background Volumes,
Figures 9 and 10 – Site Generated Trip Assignment,
Figures 11 and 12 – Future (2027) Total Traffic Volumes,
Figure 13 – Future (2027) Road Network,
Appendix A – Turning Movement Counts Provided by Ontario Traffic Inc.,
Appendix B – Signal Timing Plans Received by the Town of Cobourg,
Appendix C – Level of Service (LOS) Definitions,
Appendix D – Synchro Analysis: Existing (2020) and Future (2027) Total Traffic Conditions,
Appendix E – Excerpts from the Transportation Impact Study prepared by LEA Consulting Ltd.

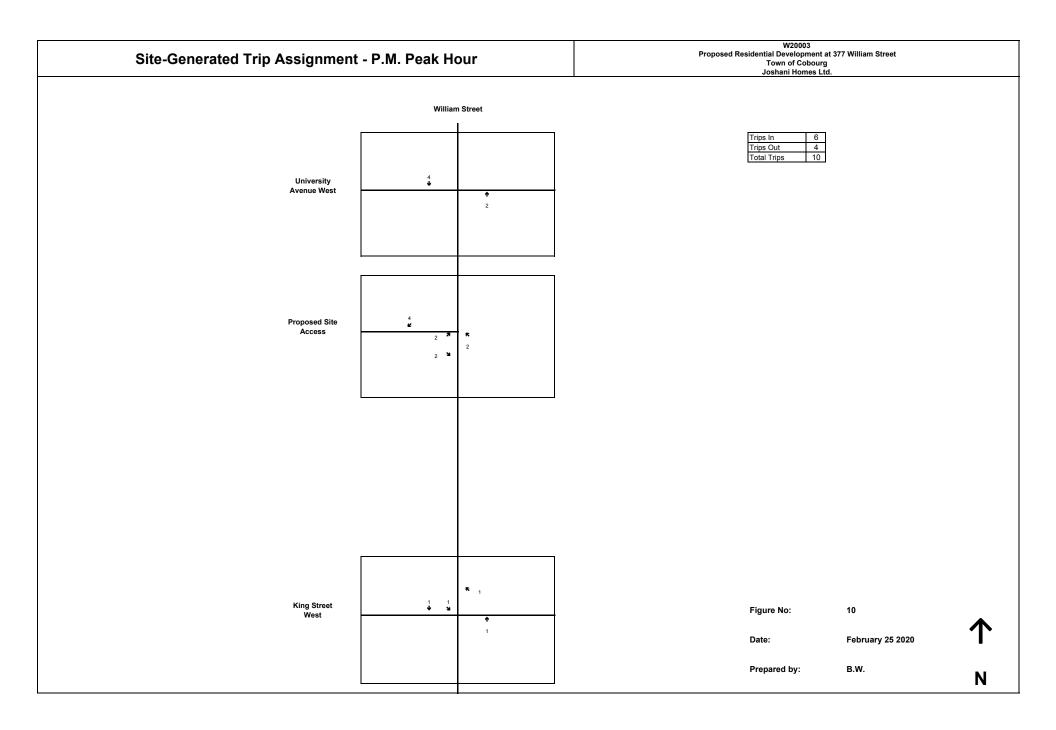


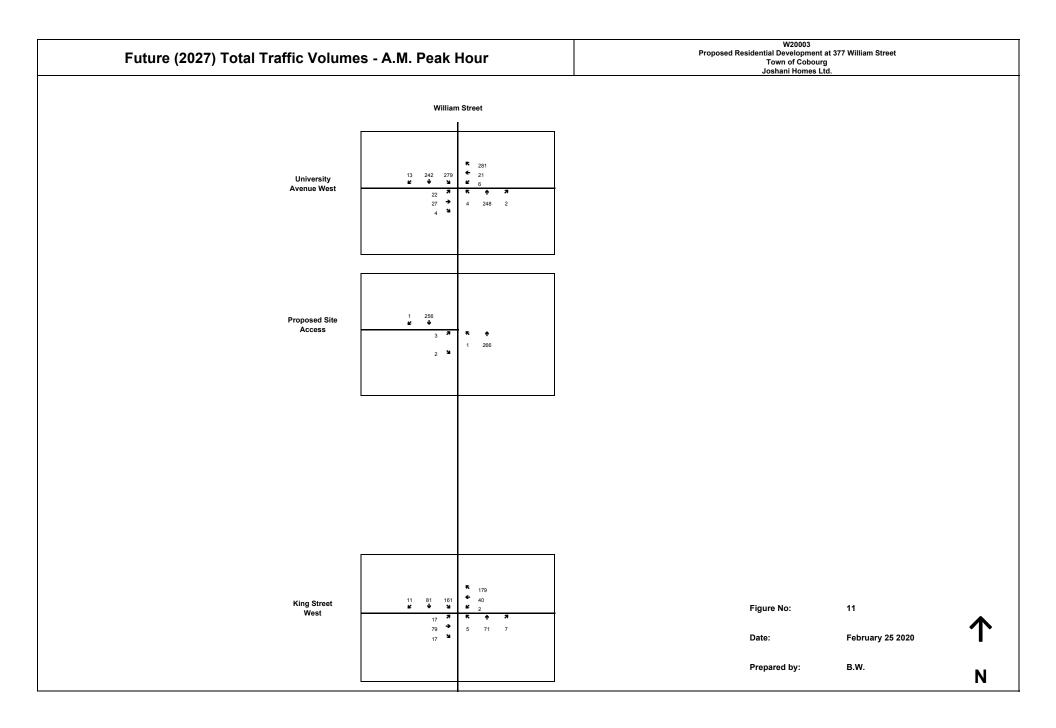


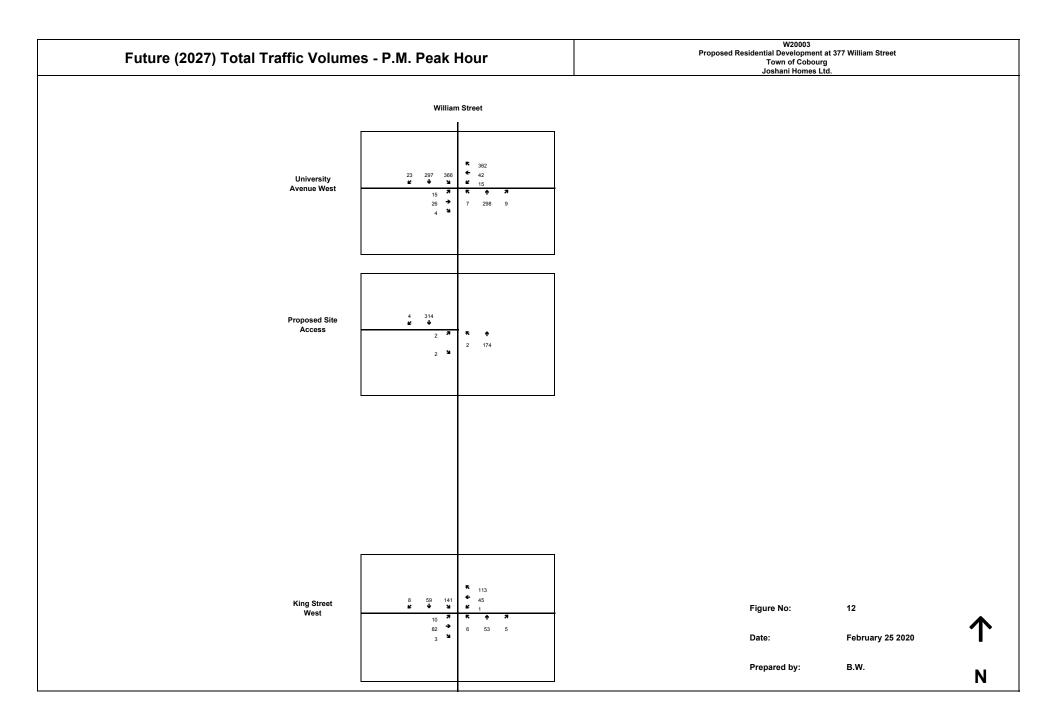


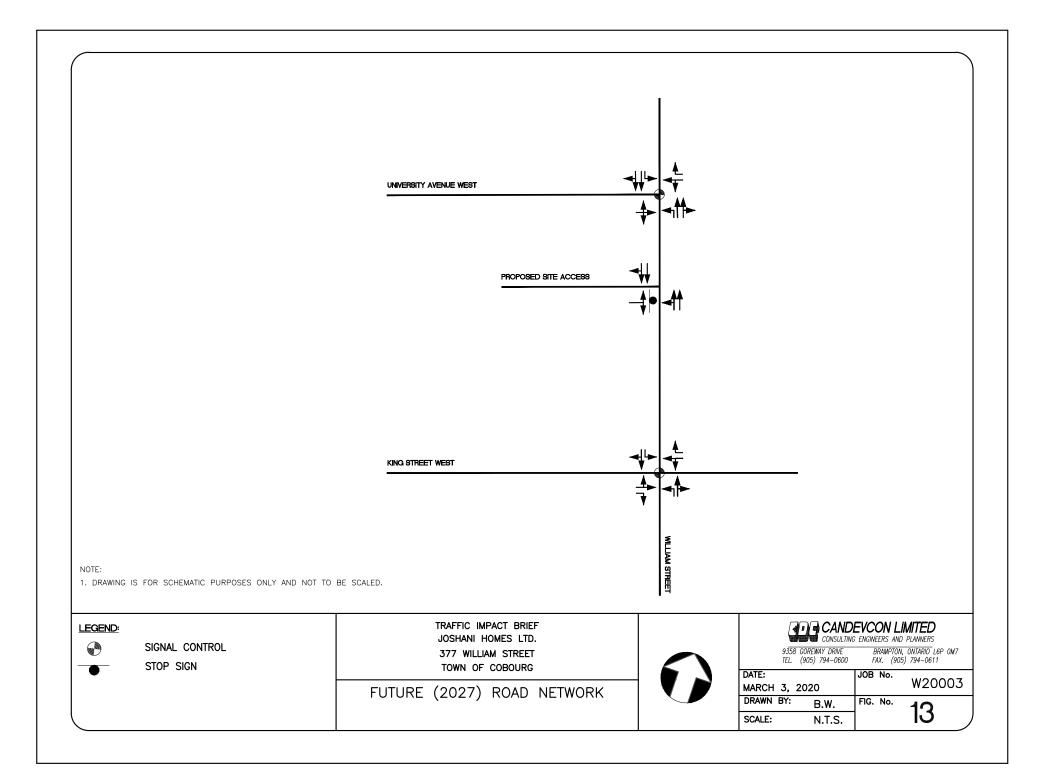








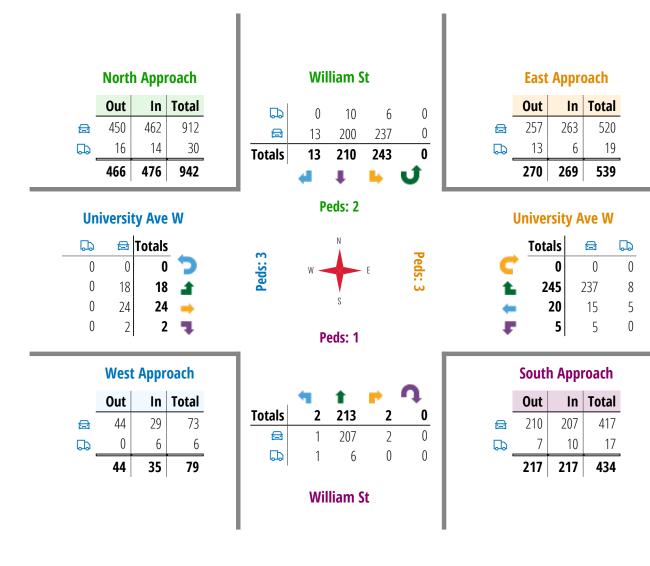




APPENDIX A

TURNING MOVEMENT COUNTS PROVIDED BY ONTARIO TRAFFIC INC.

Peak Hour Diagram


Specified Pe	riod	One Hour Peak					
From:	07:00:00	From:	08:00:00				
To:	09:00:00	To:	09:00:00				

Intersection:	William St & University Ave W
Site ID:	2002000001
Count Date:	Jan 28, 2020

Weather conditions:

** Signalized Intersection **

Major Road: William St runs N/S

🕞 - Trucks

Comments

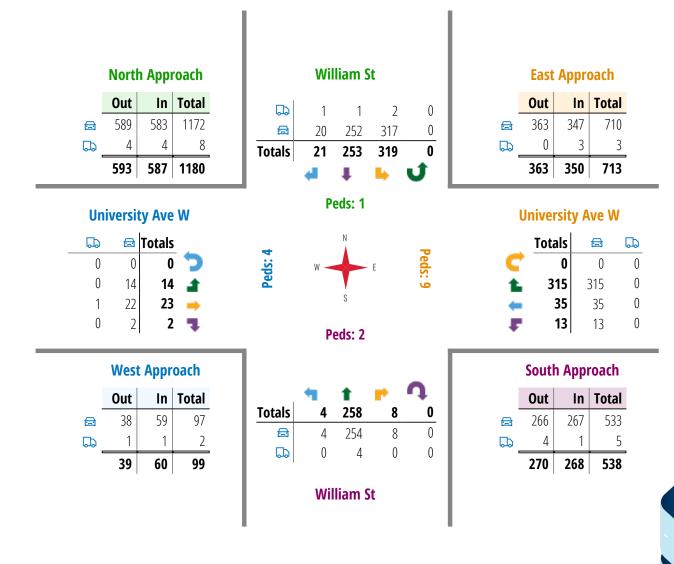
Peak Hour Summary

Intersection:	William St & University Ave W
Count Date:	Jan 28, 2020
Period:	07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

		١	North A Willia	am St	:h			S	outh A Willi	Approac am St	:h		East Approach University Ave W					West Approach University Ave W					Total Vehicl		
Start Time	•	1	•	J	Peds	Total	۹	1	•	J	Peds	Total	•	1		J	Peds	Total	•	1	•	J	Peds	Total	es
08:00	38	64	4	0	0	106	0	46	2	0	0	48	1	0	34	0	1	35	3	7	0	0	2	10	199
08:15	62	55	2	0	1	119	1	59	0	0	1	60	0	5	70	0	0	75	4	4	1	0	1	9	263
08:30	67	44	4	0	1	115	0	48	0	0	0	48	2	9	61	0	1	72	3	5	0	0	0	8	243
08:45	76	47	3	0	0	126	1	60	0	0	0	61	2	6	80	0	1	88	8	8	1	0	0	17	292
Grand Total	243	210	13	0	2	466	2	213	2	0	1	217	5	20	245	0	3	270	18	24	2	0	3	44	997
Approach %	52.1	45.1	2.8	0		-	0.9	98.2	0.9	0		-	1.9	7.4	90.7	0		-	40.9	54.5	4.5	0		-	
Totals %	24.4	21.1	1.3	0		46.7	0.2	21.4	0.2	0		21.8	0.5	2	24.6	0		27.1	1.8	2.4	0.2	0		4.4	
PHF	0.8	0.82	0.81	0		0.92	0.5	0.89	0.25	0		0.89	0.63	0.56	0.77	0		0.77	0.56	0.75	0.5	0		0.65	0.85
Cars	237	200	13	0		450	1	207	2	0		210	5	15	237	0		257	18	24	2	0		44	961
% Cars	97.5	95.2	100	0		96.6	50	97.2	100	0		96.8	100	75	96.7	0		95.2	100	100	100	0		100	96.4
Trucks	6	10	0	0		16	1	6	0	0		7	0	5	8	0		13	0	0	0	0		0	36
% Trucks	2.5	4.8	0	0		3.4	50	2.8	0	0		3.2	0	25	3.3	0		4.8	0	0	0	0		0	3.6
Peds					2	-					1	-					3	-					3	-	9
% Peds					22.2	-					11.1	-					33.3	-					33.3	-	

Peak Hour Diagram


Specified Pe	riod	One Hour Peak					
From:	16:00:00	From:	16:15:00				
To:	18:00:00	To:	17:15:00				

Intersection:	William St & University Ave W
Site ID:	2002000001
Count Date:	Jan 28, 2020

Weather conditions:

** Signalized Intersection **

Major Road: William St runs N/S

🚘 - Cars

🖵 - Trucks

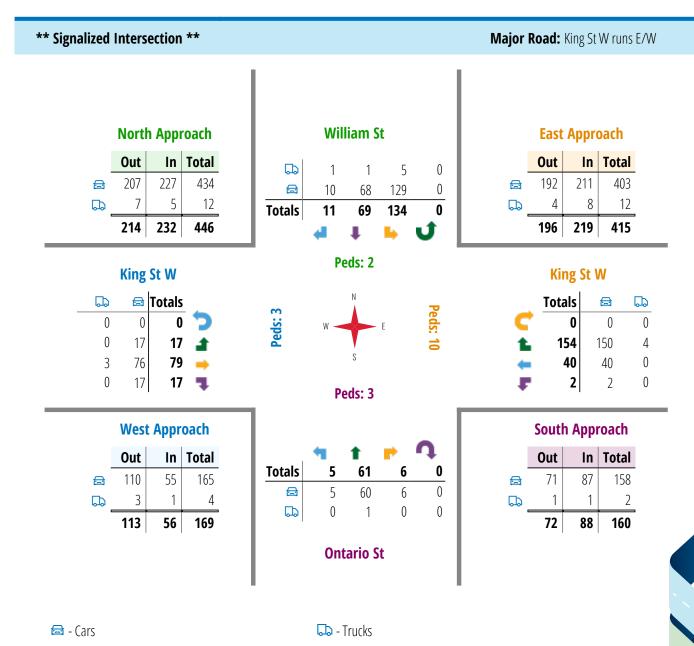
Comments

Peak Hour Summary

Intersection: William St & University Ave	W
Count Date: Jan 28, 2020	
Period: 16:00 - 18:00	

Peak Hour Data (16:15 - 17:15)

North Approach William St								S	outh A Willi	Approad iam St	h		East Approach University Ave W							West Approach University Ave W						
Start Time	•	1	•	J	Peds	Total	•	1	•	9	Peds	Total	•	1		J	Peds	Total	•	1	•	J	Peds	Total	Vehicl es	
16:15	85	69	6	0	1	160	1	66	5	0	0	72	2	9	76	0	1	87	5	11	1	0	0	17	336	
16:30	92	63	4	0	0	159	1	72	0	0	2	73	4	6	69	0	3	79	3	5	1	0	3	9	320	
16:45	67	59	7	0	0	133	0	56	1	0	0	57	2	13	73	0	1	88	4	4	0	0	0	8	286	
17:00	75	62	4	0	0	141	2	64	2	0	0	68	5	7	97	0	4	109	2	3	0	0	1	5	323	
Grand Total	319	253	21	0	1	593	4	258	8	0	2	270	13	35	315	0	9	363	14	23	2	0	4	39	1265	
Approach %	53.8	42.7	3.5	0		-	1.5	95.6	3	0		-	3.6	9.6	86.8	0		-	35.9	59	5.1	0		-		
Totals %	25.2	20	1.7	0		46.9	0.3	20.4	0.6	0		21.3	1	2.8	24.9	0		28.7	1.1	1.8	0.2	0		3.1		
PHF	0.87	0.92	0.75	0		0.93	0.5	0.9	0.4	0		0.92	0.65	0.67	0.81	0		0.83	0.7	0.52	0.5	0		0.57	0.94	
Cars	317	252	20	0		589	4	254	8	0		266	13	35	315	0		363	14	22	2	0		38	1256	
% Cars	99.4	99.6	95.2	0		99.3	100	98.4	100	0		98.5	100	100	100	0		100	100	95.7	100	0		97.4	99.3	
Trucks	2	1	1	0		4	0	4	0	0		4	0	0	0	0		0	0	1	0	0		1	9	
% Trucks	0.6	0.4	4.8	0		0.7	0	1.6	0	0		1.5	0	0	0	0		0	0	4.3	0	0		2.6	0.7	
Peds					1	-					2	-					9	-					4	-	16	
% Peds					6.3	-					12.5	-					56.3	-					25	-		



Peak Hour Diagram

Specified Pe	riod	One Hour P	eak
From:	07:00:00	From:	08:00:00
To:	09:00:00	To:	09:00:00

Intersection:	William St-Ontario St & King St W
Site ID:	2002000002
Count Date:	Jan 28, 2020

Weather conditions:

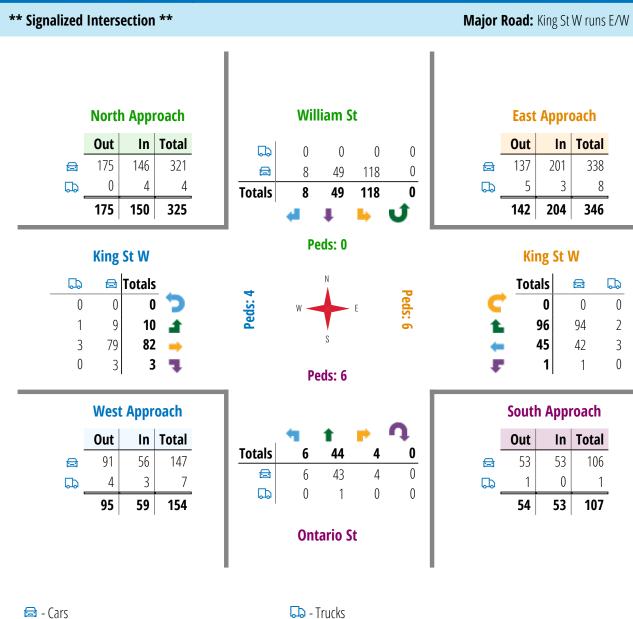
Comments

Peak Hour Summary

Intersection:	William St-Ontario St & King St W
Count Date:	Jan 28, 2020
Period:	07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

North Approach William St								S	outh A Onta	Approac ario St	h		East Approach King St W							West Approach King St W						
Start Time	•	1		J	Peds	Total	•	1	•	J	Peds	Total	•	1		J	Peds	Total	•	1		0	Peds	Total	Vehicl es	
08:00	55	13	2	0	0	70	1	14	3	0	0	18	0	4	34	0	2	38	6	27	2	0	0	35	161	
08:15	38	21	3	0	1	62	1	20	1	0	0	22	0	14	45	0	4	59	4	17	4	0	1	25	168	
08:30	17	13	5	0	0	35	1	10	1	0	3	12	2	15	35	0	2	52	2	12	3	0	1	17	116	
08:45	24	22	1	0	1	47	2	17	1	0	0	20	0	7	40	0	2	47	5	23	8	0	1	36	150	
Grand Total	134	69	11	0	2	214	5	61	6	0	3	72	2	40	154	0	10	196	17	79	17	0	3	113	595	
Approach %	62.6	32.2	5.1	0		-	6.9	84.7	8.3	0		-	1	20.4	78.6	0		-	15	69.9	15	0		-		
Totals %	22.5	11.6	1.8	0		36	0.8	10.3	1	0		12.1	0.3	6.7	25.9	0		32.9	2.9	13.3	2.9	0		19		
PHF	0.61	0.78	0.55	0		0.76	0.63	0.76	0.5	0		0.82	0.25	0.67	0.86	0		0.83	0.71	0.73	0.53	0		0.78	0.89	
Cars	129	68	10	0		207	5	60	6	0		71	2	40	150	0		192	17	76	17	0		110	580	
% Cars	96.3	98.6	90.9	0		96.7	100	98.4	100	0		98.6	100	100	97.4	0		98	100	96.2	100	0		97.3	97.5	
Trucks	5	1	1	0		7	0	1	0	0		1	0	0	4	0		4	0	3	0	0		3	15	
% Trucks	3.7	1.4	9.1	0		3.3	0	1.6	0	0		1.4	0	0	2.6	0		2	0	3.8	0	0		2.7	2.5	
Peds					2	-					3	-					10	-					3	-	18	
% Peds					11.1	-					16.7	-					55.6	-					16.7	-		



Peak Hour Diagram

Specified Pe	riod	One Hour P	eak
From:	16:00:00	From:	16:00:00
To:	18:00:00	To:	17:00:00

Intersection:	William St-Ontario St & King St W
Site ID:	200200002
Count Date:	Jan 28, 2020

Weather conditions:

🗔 - Trucks

Comments

Peak Hour Summary

Intersection:	William St-Ontario St & King St W
Count Date:	Jan 28, 2020
Period:	16:00 - 18:00

Peak Hour Data (16:00 - 17:00)

		r	North A Willi	am St	:h			S	outh A Onta	opproaction of the second seco	h				East Ap King	oproach St W)				West A King	pproac St W	h		Total Vehicl
Start Time	•	1		J	Peds	Total	•	1	•	J	Peds	Total	•	1		J	Peds	Total	•	1		J	Peds	Total	es
16:00	30	10	2	0	0	42	2	12	1	0	2	15	1	12	26	0	2	39	3	14	0	0	0	17	113
16:15	29	11	1	0	0	41	0	11	2	0	1	13	0	9	24	0	1	33	3	21	1	0	2	25	112
16:30	28	16	2	0	0	46	2	14	0	0	1	16	0	12	24	0	0	36	2	17	2	0	2	21	119
16:45	31	12	3	0	0	46	2	7	1	0	2	10	0	12	22	0	3	34	2	30	0	0	0	32	122
Grand Total	118	49	8	0	0	175	6	44	4	0	6	54	1	45	96	0	6	142	10	82	3	0	4	95	466
Approach %	67.4	28	4.6	0		-	11.1	81.5	7.4	0		-	0.7	31.7	67.6	0		-	10.5	86.3	3.2	0		-	
Totals %	25.3	10.5	1.7	0		37.6	1.3	9.4	0.9	0		11.6	0.2	9.7	20.6	0		30.5	2.1	17.6	0.6	0		20.4	
PHF	0.95	0.77	0.67	0		0.95	0.75	0.79	0.5	0		0.84	0.25	0.94	0.92	0		0.91	0.83	0.68	0.38	0		0.74	0.95
Cars	118	49	8	0		175	6	43	4	0		53	1	42	94	0		137	9	79	3	0		91	456
% Cars	100	100	100	0		100	100	97.7	100	0		98.1	100	93.3	97.9	0		96.5	90	96.3	100	0		95.8	97.9
Trucks	0	0	0	0		0	0	1	0	0		1	0	3	2	0		5	1	3	0	0		4	10
% Trucks	0	0	0	0		0	0	2.3	0	0		1.9	0	6.7	2.1	0		3.5	10	3.7	0	0		4.2	2.1
Peds					0	-					6	-					6	-					4	-	16
% Peds					0	-					37.5	-					37.5	-					25	-	

APPENDIX B

SIGNAL TIMING PLANS – RECEIVED BY THE TOWN OF COBOURG

Programmed EPAC Data

9/25/201 7:07:14AN

Inte	rsecti	ion N	ame: C	abou	rol						rsectio							
			9 Chan		~			sion: 2.29n		Inter		Acce	ss Dat	a D	20	omm :1	200 5	and
rha	se D	ata										11000	55 Dat	1		omm :1		
Vehi	cal Bas	sic Ti	nings						Vehi	cal Den	sity Tin	ings	Time	B4	Cars	Time	To	
Ph	ase M	lin_G	n Passa	ge M	lax1	Max2	Yellow	All Red	Adde	d Initia	I Max_I	nitial	Reduct	ion	Before			lin_Gap
1		6	3.0		15	15	3.0	2.0		0.0	0		0		0	0)	0.0
2		10	0.0		20	15	5.0	2.0		0.0	0		0		0	0		0.0
4		15	2.5		20	25	3.0	2.0		0.0	0		0		0	0		0.0
5 6		6 10	3.0 0.0		9 20	9 15	3.0 5.0	2.0 2.0		0.0 0.0	0		0		0 0	0		0.0 0.0
				and the second second						0.0	U	l.c.			U	U		0.0
Pedes	strian 7					ctuated Rest	General	Control Non-Ac	t Veh	Ped	Recal		llaneou		0		1.01	No
Phase	Walk	Ped	Flashing Walk	Clear		1 Walk	Initializ	e Respons				Non Lock						ultaneou: ap Out
1	0	0	No	0		No	Inactive			None		Yes	No	Passag No	ge S	ervice No	U	No
2	10	10	No	0		No	0.0000.00000000000000000000000000000000	NonAct			S (20)	No	Yes	No		No		No
4	14	10	No	0		No		NonActl				Yes	No	No		No		No
5	0	0	No	0		No	Inactive			None		Yes	No	No		No		No
6	10	10	No	0		No	Yellow	NonAct	I None	Ion Ac	t·0	No	Yes	No		No		No
-	cial Se		e		Ve	ehical I	Detector I	Phase Assi	gnment									
Dof	ault I	Data							Assig	gned		Sw	itched					
Dela									Pha		Mode	F	hase	Exte	nd D	Delay		
Defa																		
Pede	strian l fault					Defa	ılt Data	1		Specia	al Detec	tor Phas	As	<mark>nment</mark> sign nase M	Sv	vitched Phase	Exter	nd Delay
Pede	efault	Data				Defa	ılt Data	1		:	al Detec ult Da		As	sign	Sv		Exter	nd Delay
Pede: De	fault t Da	Data ta	1			Defa	ılt Data	1		: Defa	ult Da	ta	As	sign	Sv	Phase		
Pede: De Uni Ger	efault	Data	a 1	un Sta						: Defa	ult Da	ta sh	As	sign nase M	Sv ode j	Phase]	nd Delay Flash Iternat
Pede: De Uni Ger Star	efault it Da neral C rtup Ti	Data ta Contro ime: 5	a I sec Start	-	te: Fl	lash	Red Rev	ert: 4sec	cer 0	: Defa	ult Da ote Fla A = Flas	ta sh h	As Pł	sign nase M	Sv	Phase]	Flash
Pedes De Uni Ger Star Aut	t Da neral C rtup Ti to Ped	Data ta Contro ime: 5 Clear	a I sec Start : No Sto	p Tim	te: Fl e Res	lash set: No	Red Rev Alterna	ert: 4sec te Sequenc		: Defa	ult Da ote Fla A = Flas Flas	ta sh h n Flasł	As Pł	sign nase M Ch	Sv ode	Phase	l A	Flash Iternat
Pede: De Uni Ger Star Au	t Da neral C rtup Ti to Ped C conr	Data ta Contro ime: 5 Clear nector	a sec Start : No Stc Input Me	p Timo odes: 0	te: Fl e Res	lash set: No	Red Rev Alterna Ing	ert: 4sec te Sequenc out Out	put	: Defa Remo	ult Da ote Fla A = Flas Flas	ta sh h ı Flash y Exit	As Pł	sign nase M Ch	Sv ode	Phase Flash Color	l A	Flash Iternat
Pede: De Uni Ger Star Au	t Da neral C rtup Ti to Ped C conr	Data ta Contro ime: 5 Clear nector	a I sec Start : No Sto	p Timo odes: 0	te: Fl e Res	lash set: No	Red Rev Alterna Ing Resp	ert: 4sec te Sequent out Out oons Selec	put tion	: Defa Remo Test A Phas	ult Da ote Fla A = Flas Flas Entr e Phas	ta sh h r Flash y Exit e Phase	As Pł	sign nase M Ch Def	Sv ode	Phase Flash Color	l A	Flash Iternat
Pede: De Ulni Ger Star Au AB	t Da meral C rtup Ti to Ped C conr	ta Contro ime: 5 Clear nector	a sec Start : No Stc Input Me	odes: 0 Aodes:	te: Fl e Res	lash set: No	Red Rev Alterna Ing Resp 1 Rin	ert: 4sec te Sequend bout Out oons Selec g 1 Rin;	put ction g 1	: Defa Remo Test A Phas	ult Da ote Fla A = Flas Flas Entr	ta sh h r Flash y Exit e Phase	As Pł	sign nase M Ch Def	Sv ode	Phase Flash Color	l A	Flash Iternat
Pede: De Ulni Ger Star Aur AB AB D c	t Da neral C rtup Ti to Ped C conr C conr onnect	Data ta Contro ime: 5 Clear nector nector tor Inp	a I sec Start : No Stc Input Me Output M	odes: 0 Aodes: 0	te: Fl e Res	lash set: No	Red Rev Alterna Ing Resp	ert: 4sec te Sequenc out Out g 1 Rin g 2 Rin	put ction g 1 g 2	: Defa Remo Test A Phas	ult Da ote Fla A = Flas Flas Entr e Phas	ta sh h r Flash y Exit e Phase	As Pł	sign nase M Ch Def	Sv ode	Phase Flash Color	l A	Flash Iternat
Pede: De Ulni Ger Star Aur AB AB D c	t Da neral C rtup Ti to Ped C conr C conr onnect	Data ta Contro ime: 5 Clear nector nector tor Inp	a sec Start : No Stc Input Mo Output Modes	odes: 0 Aodes: 0	te: Fl e Res	lash set: No	Red Rev Alterna ing Resp 1 Rin 2 Rin	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No	put ction g 1 g 2 ne	: Defa Remo Test A Phas	ult Da ote Fla A = Flas Flas Entr e Phas	ta sh h r Flash y Exit e Phase	As Pł	sign nase M Ch Def	Sv ode	Phase Flash Color	l A	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	t Da neral C rtup Ti to Ped C conr C conr onnect	ta Contro ime: 5 Clear nector nector tor Inp tor Ou	a sec Start : No Stc Input Mo Output Modes	odes: 0 Aodes: 0	te: Fl e Res	lash set: No	Red Rev Alterna ing Resp 1 Rin 2 Rin 3 No	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No	put ction g 1 g 2 ne	: Defa Test A Phas Defau	ult Da ote Fla A = Flas Flas Entr e Phas	ta sh h r Flash y Exit e Phase	As Pł	sign nase M Ch Def	Sv ode	Phase Flash Color	l A	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault it Da neral C rtup Ti to Ped C conr C conr onnect onnect	ta Contro ime: 5 Clear nector nector tor Inp tor Ou	a sec Start : No Stc Input Mo Output Modes	p Timo odes: 0 4odes: 3: 0 es: 0	te: Fl e Res 0	lash set: No R	Red Rev Alterna ing Resp 1 Rin 2 Rin 3 No 4 No	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin	put ction g 1 g 2 ne g 2	: Defa Test A Phas Defau	ult Da ote Fla A = Flas Flas Entr e Phas Ilt Dat	ta sh h Flash Z Exit e Phase a - No	As Pł Flash	sign hase M Ch Def	Sv ode annel ault I	Phase Flash Color Data -	I A No H	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault it Da neral C rtup Ti to Ped C conr C conr onnect onnect	ta Contro ime: 5 Clear nector nector tor Inp tor Ou	a sec Start : No Stc Input Mo Output Modes	p Timo odes: 0 Aodes: s: 0 es: 0	te: Fl e Res	lash set: No R	Red Rev Alterna ing Resp 1 Rin 2 Rin 3 No	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin	put ction g 1 g 2 ne	: Defa Test / Phas Defau	ult Da ote Fla A = Flas Flas Entr e Phas Ilt Dat	ta sh h r Flash y Exit e Phase	As Pł	sign nase M Ch Def	Sv ode	Phase Flash Color	l A	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault it Da neral C rtup Ti to Ped C conr C conr onnect onnect	ta Contro ime: 5 Clear nector nector tor Inp tor Ou	a sec Start : No Sto Input Mo Output Modes tput Mod	p Timo odes: 0 4odes: 3: 0 es: 0	te: Fl e Res 0	lash set: No R	Red Rev Alterna ing Resp 1 Rin 2 Rin 3 No 4 No	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin	put ction g 1 g 2 ne g 2	: Defa Test A Phas Defau	ult Da ote Fla A = Flas Flas Entr e Phas Ilt Dat	ta sh h Flash Z Exit e Phase a - No	As Pł Flash	sign hase M Ch Def	Sv ode annel ault I	Phase Flash Color Data -	I A No H	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault it Da neral C rtup Ti to Ped C conr C conr onnect onnect	ta Contro ime: 5 Clear nector nector tor Inp tor Ou	a sec Start : No Stc Input Mo Output Modes tput Modes tput Modes tput Modes	p Timo odes: 0 4odes: 5: 0 es: 0 A 1 2	te: Fl e Res 0	lash set: No R C 3 4	Red Rev Alterna ing Resp 1 Rin 2 Rin 3 No 4 No D E	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin	put ttion g 1 g 2 ne g 2 G	: Defa Test / Phas Defa U	ult Da ote Flas Flas Entr e Phas ult Dat	ta sh h Y Exit e Phase a - No K	As Pf Flash	sign nase M Ch Def	annel annel ault I	Phase Flash Color Data -	P	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	t Da neral C rtup Ti to Ped C conr onnect onnect erlaps	Data ta Contro ime: 5 Clear nector nector tor Inp tor Ou	a sec Start : No Stc Input Mo Output Modes tput Modes tput Modes tput Modes	A A A	te: Fl e Res 0 B B	lash set: No R C 3 4 C	Red Rev Alterna Ing Resp 1 Rin 2 Rin 3 No 4 No D E	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin E F	put ttion g 1 g 2 ne g 2 G G	: Defa Test A Phas Defau H	ult Da ote Flas Flas Entr e Phas Ilt Dat	ta sh h r Flash Z Exit e Phase a - No K	As Pt Flash	sign nase M Ch Def M	annel annel ault I	Phase Flash Color Data -	P P	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault t Da heral C rtup Ti to Ped C conr onnect onnect erlaps	Data ta Contro ime: 5 Clear nector tor Inp tor Ou P rail G	a sec Start : No Sto Input Mo Output Modes tput Modes tput Modes tput Modes tput Modes tput Modes tput Modes tput Modes	P Timo odes: 0 Aodes: 5: 0 es: 0 A 1 2 A 1 2 0	te: Fl e Res 0	lash set: No R C 3 4 C 0	Red Rev Alterna Ing Resp 1 Rin 2 Rin 3 No 4 No D E 0 (ert: 4sec te Sequend out Out oons Selec g 1 Rin; g 2 Rin; ne No ne Rin E F E F	put ttion g 1 g 2 ne g 2 G G	: Defa Test / Phas Defa Uefa H	ult Da ote Flas Flas Entr e Phas Ilt Dat	ta sh h Flash Z Exit e Phase a - No K K	As Pf Flash L 0	sign hase M Ch Def M M	annel ault I N N 0	Phase Flash Color Data - O O 0	P P 0	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault t Da heral C rtup Ti to Ped C conr onnect onnect erlaps	Data ta Contro ime: 5 Clear nector nector tor Inp tor Ou P rail G rail G	a sec Start : No Stc Input Mo Output Modes tput Modes t	P Timo odes: 0 4odes: 0 es: 0 A 1 2 A 1 2 4.0	te: Fl e Res 0 B B 0 4.0	lash set: No R C 3 4 C 0 4.0	Red Rev Alterna Ing Resp 1 Rin 2 Rin 3 No 4 No D E 0 (4.0 4	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin E F F C F 0 0 4.0 4.0	put ttion g 1 g 2 ne g 2 G G 4.0	: Defa Test A Phas Defa Defa H	ult Da ote Fla A = Flas Flas Entr e Phas Ilt Dat	ta sh h Flash Z Exit e Phase a - No K K 0 .0 0.0	As Pf Flash L 0 0.0	M M M 0 0.0	ode annel annel ault I N N 0 0.0	Phase Flash Color Data - O O 0 0 0.0	P P 0 0.0	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	efault t Da heral C rtup Ti to Ped C conr onnect onnect erlaps Tr Tr	Data Data Data Data Data Data Data Data	a sec Start : No Stc Input Mo Output Modes tput Modes t	A 1 2 A 4.0 2.0	te: Fl e Res 0 B B 0 4.0 2.0	lash set: No R C 3 4 C 0 4.0 2.0	Red Rev Alterna Ing Ing Resp 1 Rin 2 Rin 3 No 4 No D E 0 (4.0 4 2.0 2	ert: 4sec te Sequend out Out oons Selec g 1 Rin; g 2 Rin; ne No ne Rin; E F 0 0 4.0 4.0 2.0 2.0	put ttion g 1 g 2 ne g 2 G G 0 4.0 2.0	: Defa Test A Phas Defat Defat H H 4.0 2.0	ult Da ote Flas Flas Entr e Phas Ilt Dat	ta sh h Flash Z Exit e Phase a - No K K K 0 .0 0.0	As Pł Flash L 0 0.0 0.0	M M 0 0.0 0.0	annel annel ault I N N 0 0.0 0.0	Phase Flash Color Data - O O O 0 0 0 0 0 0 0 0 0 0	P P 0 0.0 0.0	Flash Iternat
Pedex De Uni Ger Star Aur AB D c D c	t Da neral C rtup Ti to Ped C conr C conr onnect onnect erlaps	Data ta Contro ime: 5 Clear nector nector tor Inp tor Ou P rail G rail G	a sec Start : No Stc Input Mo Output Modes tput Modes t	A 1 2 A 4.0 2.0 0	te: Fl e Res 0 B B 0 4.0	lash set: No R C 3 4 C 0 4.0	Red Rev Alterna Ing Resp 1 Rin 2 Rin 3 No 4 No D E 0 (0 4.0 4 2.0 2 0 (0	ert: 4sec te Sequend out Out oons Selec g 1 Rin g 2 Rin ne No ne Rin E F F C F 0 0 4.0 4.0	put ttion g 1 g 2 ne g 2 G G 4.0	: Defa Test A Phas Defa Defa H H 4.0 2.0 0	ult Da ote Fla A = Flas Flas Entr e Phas Ilt Dat	ta sh h Y Exit e Phase a - No K K 0 .0 0.1 .0 0.1 0	As Pf Flash L 0 0.0	M M M 0 0.0	ode annel annel ault I N N 0 0.0	Phase Flash Color Data - O O 0 0 0.0	P P 0 0.0	lternat

	(_				_						_		_			-				
Ring															Phase	0.0						
Phase	Ring	Nex Pha			-	1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	16
1	1	2	30	Concurrent	es	1 5	2 5	3 7	4 7	1 2	1 2	3 4	3		9	10	11	12	13	14	15	16
2	1 1	3		in cui	Phases	6	6	8	8	5	6	7	8									
5	2	1 6		Co																		
6	2	7																				
Altern	ate Se																				Data	Manage
		Alt	ernat	e Sequ	lence	S		1				1			1		1			BIU Addr	Port Status	Message 40
	r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15					L D	
Phase	1	1	3	1	5	1	3	1	7	1	3	1	5	1	3	1			1	Jefau	t Data	a
Pair(s)		2	4	2	6	2	4	2	8	2	4	2	6	2	4	2	-					
	2	0	0	3	0	5	5	3	0	78	7 8	3	7 8	5	5	3						
	3	0	0	0	0	0	0	5	0	0	0	7	0	7	7	5						
	5	0	0	0	0	0	0	6	0	0	0	8	0	8	8	6						
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7						
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	8						
Cha	nnel	Acc	ian	mon	t																	\$
	rol C					in Se	t	Co	ntrol	Ch	anne	I Ha	rdwa	re Pi	n Set		Cont	trol	Chan	iel H	ardwar	re Pin Set
Ph. 1	Veh	1	1	- Ph.	I RY	G 1			2 Veł		2		Ph.2		2	Ĩ	Ph.3	Veh	3	3 -	Ph.3 F	RYG 3
Ph.4 Ph.7		4 7		- Ph.4			4 7		5 Vel 8 Vel		5 8		Ph.5 Ph.8		5 8		Ph.6 Ph.2		6 9		Ph.6 F Ph.2	
Ph.4		10		- Pfl. 2 - Ph.					.6 Pec		° 11		Ph.6				Ph.8		12		- Ph.8	
(Ph.1)		13		7 - Ph.					2 OL		14		Ph.2				Ph.3		15		- Ph.3	
Ph.4 (16) - Ph.					.1 Pec		17		Ph.1 1				Ph.3		18		- Ph.3	
Ph.5 Ph.6		19 22		8 - Ph. 2 - Ph.					.7 Pec 7 OL		20 23		Ph.7 Ph.7				Ph.5 Ph.8		21 24		- Ph.5 - Ph.8	
Coord		on l							-										Dia	l/Spl	it C	ycle
General	Coordi	natio	n Dat	a															1			
Operatio	n Mode	e: 1=A	Auto				Offs	et Mo	de: 0	=Beg	Grn		Manu	al Di	al: 0							
Coordina	ation M	lode:	0=Pe	rmissi	ve		Ford	e Mo	de: 0=	=Plan]	Manu	al Sp	lit: 0							
Maximu	n Mode	: 2=N	Max 2	:			Max	Dwe	ll Tin	ne: 0]	Manu	al Of	fset: 0	1						
Correctio							Yiel	d Per	iod: 0													
Split 7		and	Phas	e Mo	odes																	
Dial /	Split plits		Inda		DI	C.	lita	Ph. N	Inda		DI	h. Sp	lite	Dh N	Inda		DI	n. Spl	ite D	h Ma	la	
Pn. S	pins	FII. IV	lode		PI	i. Sp	ms	FII. IV	lode		F	n. Sp	ints	rn, N	loue		FI	i. Spi	Its r	II. 1VI00	ie	
Traffi	c Plan	Data	a				_															
Plan: /		ffset		•	Alt. S	Seque	nce:	Mo	ode:]	Rg 2	Lag T	ime:	Rg	g 3 Lag	; Time	: R	g 4 Lag	g Time:
Loca	I TB	C D	ata														5	Source	1	Equa	te Day	s
Start o	of Day	light	Savir	ig Mo	onth:	4 V	Veek:	1	Cycl	e Zero	Refe	erence	Hour	s: 24	Min	: 0		Dav		2 3	4 5	6 7
End o	f Dayl	ight S	Savin	g Mo	onth:	10 V	eek:	5										2	3	4 5	60	0 0
Traffi	c Data	i -												• рц	ASEI		TION	T —				
vent	Dav	Ti	me	ם א	5/0	flash		1	2	3	4	5	6	7	۱ عد. 8	9	10	11	12	13	14	15 16
	2		4:0	0/0		<u>nusti</u>			X	Ĺ			X	Ó	Ľ	ΙĹ] [ם נ	Ő	Ő		ŐŐ
2	2	1	6:0	0/0	/4																\Box	

,
AUX. Events
Det. Det. Det. Program Aux Ouputs Diag Bpt Mult100 Special Function Outputs
ProgramAux OuputsDiag. Rpt.Mult100Special Function OutputsEventDayHour Min.123D1D2D3Dimming12345678
Default Data - No Special Day(s) or Week(s) Programmed
Special Functions
Function SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
Phase Function
Phase Function Map PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PF16
Dimming Data
Channel Red Yellow Green Alternate
Default Data - No Dimming Programmed
Preemption Data
General Preemption Data
Ring Min Grn/Walk Time
1 10 2 10
3 10
4 10
Flash > Preepmt 1Preepmt 2 = Preempt 3Preepmt 4 = Preempt 5Preepmt 1 > Preepmt 2Preepmt 3 = Preempt 4Preepmt 5 = Preempt 6
E Preempt Timers Select Return
Non- Link to Ped Dwell Ped
Locking Preemnt Delay Extend Duration MaxCall Lock-Out Clear Yel Red Grn Ped Yel Red Green Clear Yel Red
1 No 0 0 5 0 100 0 8 4.0 2.0 0 0.0 0.0 10 8 4.0 2.0 2 No 0 0 5 0 100 0 8 4.0 2.0 0 0 0.0 0.0 10 8 4.0 2.0
2 No 0 5 0 100 0 8 4.0 2.0 0 0.0 0.0 10 8 4.0 2.0 3 No 0 0 0 0 0 8 4.0 2.0 10 8 4.0 2.0
4 No 0 0 0 0 0 0 0 8 4.0 2.0 10 8 4.0 2.0 10 8 4.0 2.0
5 No 0 0 0 0 0 0 8 4.0 2.0 10 8 4.0 2.0 10 8 4.0 2.0
6 No 0 0 0 0 0 0 8 4.0 2.0 10 8 4.0 2.0 10 8 4.0 2.0

 \bigcirc

		¥.																
	F	Preempt	1	1	Preemp	t 2	P	reempt	t 3	I	Preemp	t 4	Р	reempt	5	1	Preemp	6
	Dhase	Exit	Exit	Dhaar	Exit	Exit	Dhasa	Exit	Exit	Dhasa	Exit	Exit	Dhoco	Exit	Exit	Dhose	Exit	Exit
	Phase 1	Phase No	Calls Yes	Phase 1	Phase No	Calls Yes	Phase 1	Phase No	Calls Yes	Phase 1	Phase No	Calls Yes	Phase 1	Phase No	Calls Yes	Phase 1	Phase No	Calls Yes
\bigcap) 2	Yes	Yes	2	Yes	Yes	2	Yes	Yes	2	Yes	Yes	2	Yes	Yes	2	Yes	Yes
C	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes
	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes	4	No	Yes
	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes
	6	Yes	Yes	6	Yes	Yes	6	Yes	Yes	6	Yes	Yes	6	Yes	Yes	6	Yes	Yes
	7	No No	Yes Yes	7 8	No No	Yes Yes	7 8	No No	Yes Yes	7 8	No No	Yes Yes	7 8	No No	Yes Yes	7 8	No No	Yes Yes
	8			8	INU	ICS	0	INU	105	0	INU	105	0	INO	105	0	INO	1 05
	2	rity Ti					5											
	Priori	ity No	on-Lock	ing		Extend			Dwell	Max_		Lock-C		ip Phas	ses Skip P	haaaa		
	1		No No		0 0	0 0	0		0 0	(0			Skip P			
	3		No		0	0	0		0	(0			Skip P			
	4		No		0	0	0		0	Ċ		0			Skip P			
	5		No		0	0	0		0	()	0	0=	Do not	Skip P	hases		
	6		No		0	0	0		0	()	0	0=	Do not	Skip P	hases		
	I	Priority	1		Priority	2	P	riority	3	1	Priority	4	F	Priority	5	1	Priority	6
		Exit	Exit	-	Exit	Exit	-	Exit	Exit		Exit	Exit		Exit	Exit		Exit	Exit
	Phase	Phase	Calls	Phase	Phase	Calls	Phase	Phase	Calls	Phase	Phase	Calls	Phase	Phase	Calls	Phase	Phase	Calls
	Preen	ant 1																
	I ICCII	-	ical Pha	ases					edestrian			2				Overlaps		
	Ph. Tr	ack	Dwe	ell	Cycle		Ph Tra	ck	Dw	/ell	Су	cle	Ovh	Trac	ĸ	Dwell	C	lycle
		led Led	Green Green		No No]	Defaul	t Dat	a				Defa	ult D	ata			
C	6 R Preem		Uleel	1	INO													
<u> </u>																		
		Veh	ical Pha	ases					ian Phas		2		Ovin		Overlap		Cycle	
	Ph. Tr	ack	Dwe	ell	Cycle		P Ph. Tra		ian Phas Dwell	es Cycle	e		Ovln	Track	-		Cycle	
	4 R	ack Red		ell	Cycle No			ck	Dwell		e				Dv		Cycle	
		rack Red npt 3	Dwe Green	ell n	-		Ph. Tra Defaul	^{ck} t Dat	Dwell	Cycl	e		Defa	Track	Dv ata Overlap	vell		
	4 R Preem	rack Red npt 3 Veh	Dwe Green	ell n ases	No	1	Ph. Tra Defaul	ck t Dat edestri	Dwell a	Cycl			Defa	Track	Dv ata Overlap	vell		
	4 R	rack Red npt 3 Veh	Dwe Green	ell n ases	-]	Ph. Tra Defaul P Ph. Tra	ck t Dat edestri ck	Dwell a ian Phas Dwell	Cycle			Defa Ovln) Track Inult D	Dv ata Overlar k D	vell		
	4 R Preem Ph. Tr Defau	rack Red npt 3 Veh rack ult Dat	Dwe Green tical Pha Dwe	ell n ases	No]	Ph. Tra Defaul P	ck t Dat edestri ck	Dwell a ian Phas Dwell	Cycle			Defa Ovln	Track	Dv ata Overlar k D	vell		
	4 R Preem Ph. Tr	rack Red npt 3 Veh rack ult Dat npt 4	Dwe Green iical Pha Dwe	ell n ases ell	No]	Ph. Tra Defaul P Ph. Tra Defaul	ck t Dat edestri ck t Dat	Dwell a ian Phas Dwell a	Cycle es Cycle			Defa Ovln	Track Track Track	Dv ata Overlar k D ata	vell os well		
	4 R Preem Ph. Tr Defau Preem	rack Red Dpt 3 Veh rack Ilt Dat Dpt 4 Veh	Dwe Green iical Pha Dwe t a	ell n ases ell ases	No	1	Ph. Tra Defaul P Ph. Tra Defaul P	ck t Dat edestri ck t Dat	Dwell a ian Phas Dwell a ian Phas	Cycle es Cycle	9		Defa Ovin Defa) Track nult D). Trac nult D	Dv ata Overlap k D ata Overlap	vell os well os		
	4 R Preem Ph. Tr Defau	rack Red Dpt 3 Veh rack Ilt Dat Dpt 4 Veh	Dwe Green iical Pha Dwe	ell n ases ell ases	No	1	Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Ph. Tra	ck t Dat edestrick t Dat edestrick	Dwell a ian Phas Dwell a ian Phas Dwell	Cycle es Cycle es	9		Defa Ovln Defa Ovln) Track nult D). Track nult D	Dv ata Overlap k D ata Overlap k D	vell os well os	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Ph. Tr Defau	ack aed ppt 3 Veh rack ilt Dat ppt 4 Veh rack ilt Dat	Dwe Green iical Pha Dwe ta	ell n ases ell ases	No	1	Ph. Tra Defaul P Ph. Tra Defaul P	ck t Dat edestrick t Dat edestrick	Dwell a ian Phas Dwell a ian Phas Dwell	Cycle es Cycle es	9		Defa Ovln Defa Ovln) Track nult D). Trac nult D	Dv ata Overlap k D ata Overlap k D	vell os well os	Cycle	
	4 R Preem Ph. Tr Defau Preem Ph. Tr	rack ted pt 3 Veh- rack ilt Da pt 4 Veh- rack ilt Da rack ilt Da rack	Dwe Green iical Pha Dwe ta iical Pha Dwe	ases ell ases ell	No	1	Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul	ck t Dat edestri ck t Dat edestri ck t Dat	Dwell a ian Phas Dwell a ian Phas Dwell a	Cycle es Cycle es Cycle	9		Defa Ovln Defa Ovln) Track nult D). Track nult D	Dv ata Overlap k D ata Overlap k D ata	vell os well os well	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Defau Preem	rack led veh rack ilt Da npt 4 Veh rack ilt Da npt 5 Veh	Dwe Green iical Pha Dwe ta iical Pha Dwe ta	ell n ases ell ases ell ases	No Cycle Cycle		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul P	ck t Dat edestrick t Dat edestrick t Dat	Dwell a ian Phas Dwell a ian Phas Dwell	Cycle es Cycle es Cycle	ð		Defa Ovin Defa Ovin Defa) Track nult D). Track nult D). Track	Dv ata Overlap k D ata Overlap k D ata	vell os well os well os	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Ph. Tr Defau	rack led veh rack ilt Da npt 4 Veh rack ilt Da npt 5 Veh	Dwe Green iical Pha Dwe ta iical Pha Dwe	ell n ases ell ases ell ases	No		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Ph. Tra	ck t Dat edestrick t Dat edestrick t Dat	Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell	Cycle es Cycle es Cycle	ð		Defa Ovln Defa Ovln Defa) Track nult D). Track nult D). Track nult D	Dv ata Overlap k D ata Overlap k D ata Overlap k D	vell os well os well os	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Defau Ph. Tr Preem Ph. Tr	rack led veh rack ilt Da npt 4 Veh rack ilt Da npt 5 Veh	Dwe Green Dwe ta ical Pha Dwe ta ical Pha Dwe	ell n ases ell ases ell ases	No Cycle Cycle		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul P	ck t Dat edestrick t Dat edestrick t Dat	Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell	Cycle es Cycle es Cycle	ð		Defa Ovln Defa Ovln Defa) Track nult D). Track nult D). Track	Dv ata Overlap k D ata Overlap k D ata Overlap k D	vell os well os well os	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Defau Ph. Tr Preem Ph. Tr	rack ked npt 3 Veh rack npt 4 Veh rack npt 5 Veh rack npt 5 Veh rack	Dwe Green Dwe ta ical Pha Dwe ta ical Pha Dwe	ell n ases ell ases ell ases	No Cycle Cycle		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul	ck t Dat edestrick t Dat edestrick t Dat redestrick t Dat	Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas	Cycle es Cycle es Cycle es Cycle	ð		Defa Ovln Defa Ovln Defa) Track () Track	Dv ata Overlap k D ata Overlap k D ata Overlap k D ata	vell os well os well os well	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Defau Ph. Tr Defau Ph. Tr Defau Ph. Tr	rack led veh rack veh rack veh rack veh rack veh rack veh rack ult Dat pt 5 veh rack veh veh veh veh veh veh veh veh	Dwe Green iical Pha Dwe ta iical Pha Dwe ta iical Pha Dwe	ell n ases ell ases ell ases ell ases	No Cycle Cycle Cycle		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra	ck t Dat edestrick t Dat edestrick t Dat redestrick t Dat	Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell a a ian Phas	Cycle es Cycle es Cycle es Cycle	e e		Defa Ovln Defa Ovln Defa Ovln Defa) Track 1 ult D 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track	Dv ata Overlap k D ata Overlap k D ata Overlap k D	vell os well os well os well os	Cycle Cycle Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Defau Ph. Tr Defau Ph. Tr Defau	rack led veh rack veh rack veh rack veh rack veh rack veh rack ult Dat pt 5 veh rack veh veh veh veh veh veh veh veh	Dwe Green Lical Pha Dwe ta Lical Pha Lical Pha Dwe ta	ell n ases ell ases ell ases ell ases	No Cycle Cycle		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul	ck t Dat edestrick t Dat edestrick t Dat redestrick t Dat	Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas	Cycle es Cycle es Cycle es Cycle	e e		Defa Ovln Defa Ovln Defa Ovln Defa) Track 1 ult D 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track	Dv ata Overlap k D ata Overlap k D ata Overlap k D ata	vell os well os well os well os	Cycle	
	4 R Preem Ph. Tr Defau Ph. Tr Defau Ph. Tr Defau Ph. Tr Defau Preem	rack led veh rack veh rack veh rack veh rack veh rack veh rack ult Dat pt 5 veh rack veh veh veh veh veh veh veh veh	Dwe Green Dwe ta ical Pha Dwe ta ical Pha Dwe ta ical Pha Dwe	ell n ases ell ases ell ases ell ases	No Cycle Cycle Cycle		Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra Defaul Ph. Tra	ck t Dat edestrick t Dat edestrick t Dat edestrick it Dat	Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell a ian Phas Dwell a	Cycle es Cycle es Cycle es Cycle	e e		Defa Ovin Defa Ovin Defa Ovin Defa) Track 1 ult D 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track 1. Track	Dv ata Overlap k D ata Overlap k D ata Overlap k D	vell os well os well os well os	Cycle Cycle Cycle	

Page 4 of 5

()

System/Detectors Data		
Local Critical Alarms	Revert to Backup: 15	1st Phone:
Local Free: No Cycle Failure: No Coord Failure: No	Conflict Flash: No Remote Flash: No	2nd Phone:
Local Fash: No Cycle Fault: No Coord Fault: No	Premption: No Voltage Monitor: No	
Special Status 1: No Special Status 2: No Special Statu	s 3: No Special Status 4: No Special Stat	us 5: No Special Status 6: No
Traffic Responsive		
System Detector Average Occupancy	Min Queue 1 System Weigh	
Detector Channel Veh/Hr Time(mins) Correction/10	Volume % Detectors Detectors Factor	r Detectors Detectors Factor
Default Data	Default Data	Default Data

Default Data Sample Interval:

Queue: 1 Input Selection: 0=Average Queue: Detector Failed Level: 0 Level Enter Leave Dial / Split / Offset Queue: 2 Input Selection: 0=Average 11 Detector Failed Level: 0 **Default Data**

Erratic

Vehical Detector **Diagnostic Value 0** Max No Erratic Detector Presence Activity Count

Default Data - Diag 0 Values

Pedestrian Detector **Diagnostic Value 0** Max No Erratic Detector Presence Activity Count

Default Data - No Diag 0 Values

Speed Trap Data Speed Trap: Measurement: Detector 1 Detector 2 Distance : **Default Data - No Diag 1 Values** Pedestrian Detector

Detector Presence Activity Count

Diagnostic Value 1

No

Vehical Detector

Max

Diagnostic Value 1 Max No Erratic Detector Presence Activity Count

Default Data - No Diag 1 Values

11

Default Data

Default Data - No Diag 1 Values Speed Trap Speed Trap Dial/Split/Offset Low Treshold High Treshold

Special Detector

Special Detector

Max

Max

Detector Presence Activity Count

Default Data - No Diag 0 Valu

Detector Presence Activity Count

Diagnostic Value 0

Diagnostic Value 1

No

No

Erratic

Erratic

Default Data

Volume Detector Data

Report Interval Volume Controller Detector Detector Number Channel

Default Data

APPENDIX C

LEVEL OF SERVICE (LOS) DEFINITIONS

LEVEL OF SERVICE DEFINITIONS

Level of Service Criteria for Signalized Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
Α	≤ 10	Excellent. Progression is extremely favourable and most of the vehicles arrive during the green phase. Most vehicles do not stop at all
В	>10 & ≤ 20	Very Good. Good progressing, short cycle lengths or both. More vehicles stop than with LOS "A", causing higher levels of average delay.
с	>20 & ≤ 35	Good. Fair progressing, longer cycle lengths or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.
D	>35 & ≤ 55	Fair. At level D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavourable progression, long cycle lengths, or high V/C ratio. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	>55 & ≤ 80	Poor. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.
F	>80	Unsatisfactory. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. It may also occurs at high V/C ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors to such delays. These high delay values generally indicate poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.

Source: From Highway Capacity Manual Special Report 209-Table 9-1, Page 9-7

LEVEL OF SERVICE DEFINITIONS

Level of Service Criteria for Two Way Stop Control (TWSC) Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
A	≤ 10	Excellent. Large & frequent gaps in traffic on the main roadway. Queuing on the minor street is rare
В	>10 & ≤ 15	Very Good. Fewer gaps exist in the traffic on the main roadway. Queuing on the minor street is minimal.
С	>15 & ≤ 25	Good. Fewer gaps exist in traffic on the main roadway. Delay on the minor approach becomes more noticeable.
D	>25 & ≤ 35	Fair. Infrequent & shorter gaps in traffic on the main roadway. Queuing lengths develop on the minor street.
E	>35 & ≤ 50	Poor. Very infrequent gaps in traffic on the main roadway. Queuing lengths become noticeable.
F	>50	Unsatisfactory. Very few gaps in traffic on the main roadway. Excessive delays with significant queue lengths on the minor street

Source: From Highway Capacity Manual Special Report 209-Table 10-7, Page No.10-25

APPENDIX D

SYNCHRO ANALYSIS

- EXISTING (2020) TRAFFIC CONDITIONS
- FUTURE (2027) TOTAL TRAFFIC CONDITIONS

HCM Signalized Intersection Capacity Analysis 3: William Street & University Avenue West

	٦	-	\mathbf{i}	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ર્સ	1	۲	A		<u> </u>	A1⊅	
Traffic Volume (vph)	18	24	2	5	20	245	2	213	2	243	210	13
Future Volume (vph)	18	24	2	5	20	245	2	213	2	243	210	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		0.0	10.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	0		0	1		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1872	0	0	1577	1597	1190	3540	0	1750	3449	0
Flt Permitted		0.897			0.958		0.590			0.493		
Satd. Flow (perm)	0	1712	0	0	1526	1574	736	3540	0	905	3449	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				288		1			10	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		87.1			278.4			71.3			86.1	
Travel Time (s)		7.8			25.1			5.1			6.2	
Confl. Peds. (#/hr)	2		1	1		2	3		3	3		3
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles (%)	0%	0%	0%	3%	25%	0%	50%	3%	0%	2%	5%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	51	0	0	30	288	2	253	0	286	262	0
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			4			2			6	
Permitted Phases	4			4		4	2			6		
Detector Phase	4	4		4	4	4	5	2		1	6	
Switch Phase												
Minimum Initial (s)	15.0	15.0		15.0	15.0	15.0	6.0	10.0		6.0	10.0	
Minimum Split (s)	24.0	24.0		24.0	24.0	24.0	11.0	27.0		11.0	27.0	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	14.0	27.0		20.0	33.0	
Total Split (%)	34.7%	34.7%		34.7%	34.7%	34.7%	19.4%	37.5%		27.8%	45.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	5.0		3.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0			5.0	5.0	5.0	7.0		5.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	Max		None	Max	
Act Effct Green (s)		15.8			15.8	15.8	28.1	20.1		37.7	33.7	
Actuated g/C Ratio		0.25			0.25	0.25	0.44	0.32		0.59	0.53	
v/c Ratio		0.12			0.08	0.47	0.01	0.23		0.42	0.14	
Control Delay		19.5			19.8	5.9	7.0	17.5		8.5	8.6	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		19.5			19.8	5.9	7.0	17.5		8.5	8.6	
LOS		В			В	А	А	В		А	А	
Approach Delay		19.5			7.2			17.4			8.5	
Approach LOS		В			А			В			А	
Queue Length 50th (m)		4.6			2.8	0.0	0.1	11.5		14.5	6.6	
Queue Length 95th (m)		12.4			8.6	14.0	0.8	21.8		27.5	17.6	
Internal Link Dist (m)		63.1			254.4			47.3			62.1	

CANDEVCON LIMITED

	٦	+	*	4	+	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)							30.0			35.0		
Base Capacity (vph)		542			482	694	425	1119		737	1836	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.09			0.06	0.41	0.00	0.23		0.39	0.14	
Intersection Summary												
Area Type:	Other											
Cycle Length: 72												
Actuated Cycle Length: 63.	.5											
Natural Cycle: 65												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.47												
Intersection Signal Delay: 7	10.6			In	tersectior	n LOS: B						
Intersection Capacity Utilization	ation 58.9%			IC	U Level o	of Service	В					
Analysis Period (min) 15												

Splits and Phases: 3: William Street & University Avenue West

Ø1	™ ¶ø2	₩ø4	
20 s	27 s	25 s	
▲ Ø5	Ø6		
14 s	33 s		

	≯	+	*	4	Ļ	•	•	t	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		با	1	<u>۲</u>	eî.		<u> </u>	el 🕴	
Traffic Volume (vph)	17	79	17	2	40	154	5	61	6	134	69	11
Future Volume (vph)	17	79	17	2	40	154	5	61	6	134	69	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	18.0		0.0	0.0		0.0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1843	1597	0	1917	1551	1785	1854	0	1716	1838	0
Flt Permitted		0.927			0.981		0.699			0.603		
Satd. Flow (perm)	0	1723	1557	0	1884	1551	1307	1854	0	1073	1838	0
Right Turn on Red			Yes			No			Yes			Yes
Satd. Flow (RTOR)			117					7			12	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.2			179.1			126.4			288.5	
Travel Time (s)		13.2			12.9			9.1			20.8	
Confl. Peds. (#/hr)	2		3	3			3		10	10		3
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	4%	0%	0%	0%	3%	0%	2%	0%	4%	1%	9%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	108	19	0	47	173	6	76	0	151	90	0
Turn Type	Perm	NA	Perm	Perm	NA	pt+ov	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8	18		2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8	18	5	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	27.0	27.0	27.0	27.0	27.0		8.0	26.0		8.0	26.0	
Total Split (s)	27.0	27.0	27.0	27.0	27.0		8.0	29.0		9.0	30.0	
Total Split (%)	41.5%	41.5%	41.5%	41.5%	41.5%		12.3%	44.6%		13.8%	46.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0		0.0	3.0		0.0	3.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0	7.0		7.0		3.0	7.0		3.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None		None	Min		None	Min	
Act Effct Green (s)		11.7	11.7		11.7	23.0	24.0	14.7		27.8	24.4	
Actuated g/C Ratio		0.25	0.25		0.25	0.50	0.52	0.32		0.60	0.53	
v/c Ratio		0.25	0.04		0.10	0.22	0.01	0.13		0.21	0.09	
Control Delay		16.0	0.2		14.4	7.1	6.4	13.9		7.1	9.8	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		16.0	0.2		14.4	7.1	6.4	13.9		7.1	9.8	
LOS		В	А		В	А	А	В		А	А	
Approach Delay		13.6			8.7			13.4			8.1	
Approach LOS		В			А			В			А	
Queue Length 50th (m)		6.9	0.0		2.9	6.1	0.3	4.3		5.2	3.3	
Queue Length 95th (m)		19.3	0.0		10.1	19.1	1.8	14.2		17.2	15.4	
Internal Link Dist (m)		159.2			155.1			102.4			264.5	

CANDEVCON LIMITED

	≯	+	*	4	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)			15.0				18.0					
Base Capacity (vph)		766	757		838	872	732	924		732	1098	
Starvation Cap Reductn		0	0		0	0	0	0		0	0	
Spillback Cap Reductn		0	0		0	0	0	0		0	0	
Storage Cap Reductn		0	0		0	0	0	0		0	0	
Reduced v/c Ratio		0.14	0.03		0.06	0.20	0.01	0.08		0.21	0.08	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 46.	1											
Natural Cycle: 65												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.25												
Intersection Signal Delay: 1	0.0			In	tersectior	n LOS: A						
Intersection Capacity Utiliza	ation 44.1%			IC	U Level o	of Service	А					
Analysis Period (min) 15												

Splits and Phases: 6: King Street West & William Street

Ø1	≪1 ø2	₩ Ø4	
9 s	29 s	27 s	
▲ Ø5	Ø6	₩ Ø8	
8 s	30 s	27 s	

HCM Signalized Intersection Capacity Analysis 3: William Street & University Avenue West

	≯	+	*	4	Ļ	•	•	t	*	*	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्स	1	۲	A		۲	A	
Traffic Volume (vph)	14	23	2	13	35	315	4	258	8	319	253	21
Future Volume (vph)	14	23	2	13	35	315	4	258	8	319	253	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		0.0	10.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	0		0	1		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1829	0	0	1894	1597	1785	3559	0	1767	3589	0
Flt Permitted		0.909			0.933		0.574			0.479		
Satd. Flow (perm)	0	1693	0	0	1791	1576	1073	3559	0	883	3589	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				335		4			13	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		87.1			278.4			71.3			86.1	
Travel Time (s)		7.8			25.1			5.1			6.2	
Confl. Peds. (#/hr)	1		2	2		1	4		9	9		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0%	4%	0%	0%	0%	0%	0%	2%	0%	1%	0%	5%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	41	0	0	51	335	4	283	0	339	291	0
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			4		5	2		1	6	
Permitted Phases	4			4		4	2			6		
Detector Phase	4	4		4	4	4	5	2		1	6	
Switch Phase												
Minimum Initial (s)	15.0	15.0		15.0	15.0	15.0	6.0	10.0		6.0	10.0	
Minimum Split (s)	24.0	24.0		24.0	24.0	24.0	11.0	27.0		11.0	27.0	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	14.0	27.0		20.0	33.0	
Total Split (%)	34.7%	34.7%		34.7%	34.7%	34.7%	19.4%	37.5%		27.8%	45.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	5.0		3.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0			5.0	5.0	5.0	7.0		5.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	Max		None	Max	
Act Effct Green (s)		15.8			15.8	15.8	28.1	20.1		38.5	34.5	
Actuated g/C Ratio		0.25			0.25	0.25	0.44	0.31		0.60	0.54	
v/c Ratio		0.10			0.12	0.52	0.01	0.25		0.49	0.15	
Control Delay		19.5			20.4	6.2	6.8	17.8		9.3	8.5	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		19.5			20.4	6.2	6.8	17.8		9.3	8.5	
LOS		В			С	А	А	В		А	А	
Approach Delay		19.5			8.0			17.7			8.9	
Approach LOS		В			А			В			А	
Queue Length 50th (m)		3.8			5.0	0.0	0.2	13.2		17.7	7.4	
Queue Length 95th (m)		11.1			13.4	18.1	1.3	25.6		35.7	20.5	
Internal Link Dist (m)		63.1			254.4			47.3			62.1	

CANDEVCON LIMITED

	≯	+	*	4	+	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)							30.0			35.0		
Base Capacity (vph)		529			558	722	619	1113		735	1931	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.08			0.09	0.46	0.01	0.25		0.46	0.15	
Intersection Summary												
Area Type:	Other											
Cycle Length: 72												
Actuated Cycle Length: 64.	3											
Natural Cycle: 65												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 0.52												
Intersection Signal Delay: 1	0.9			In	tersectior	n LOS: B						
Intersection Capacity Utiliza	ation 63.2%			IC	U Level o	of Service	В					
Analysis Period (min) 15												

Splits and Phases: 3: William Street & University Avenue West

Ø1	1 ø2	₩ Ø4	
20 s	27 s	25 s	
▲ ø₅	Ø6		
14 s 33	S		

	≯	+	*	4	Ļ	•	•	t	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		ا	1	<u>۲</u>	eî.		<u> </u>	el 🕴	
Traffic Volume (vph)	10	82	3	1	45	96	6	44	4	118	49	8
Future Volume (vph)	10	82	3	1	45	96	6	44	4	118	49	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	18.0		0.0	0.0		0.0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1824	1597	0	1796	1566	1785	1859	0	1785	1876	0
Flt Permitted		0.952			0.991		0.718			0.619		
Satd. Flow (perm)	0	1747	1550	0	1781	1566	1341	1859	0	1152	1876	0
Right Turn on Red			Yes			No			Yes			Yes
Satd. Flow (RTOR)			117					4			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.2			179.1			126.4			288.5	
Travel Time (s)		13.2			12.9			9.1			20.8	
Confl. Peds. (#/hr)			6	6			4		6	6		4
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	10%	4%	0%	0%	7%	2%	0%	2%	0%	0%	0%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	97	3	0	48	101	6	50	0	124	60	0
Turn Type	Perm	NA	Perm	Perm	NA	pt+ov	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8	. 18		2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8	18	5	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	27.0	27.0	27.0	27.0	27.0		8.0	26.0		8.0	26.0	
Total Split (s)	28.0	28.0	28.0	28.0	28.0		8.0	29.0		8.0	29.0	
Total Split (%)	43.1%	43.1%	43.1%	43.1%	43.1%		12.3%	44.6%		12.3%	44.6%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0		0.0	3.0		0.0	3.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0	7.0		7.0		3.0	7.0		3.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None		None	Min		None	Min	
Act Effct Green (s)		11.9	11.9		11.9	22.2	23.8	17.7		25.7	22.8	
Actuated g/C Ratio		0.27	0.27		0.27	0.51	0.54	0.40		0.59	0.52	
v/c Ratio		0.21	0.01		0.10	0.13	0.01	0.07		0.17	0.06	
Control Delay		15.0	0.0		14.0	6.6	6.3	13.2		6.9	9.9	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.0	0.0		14.0	6.6	6.3	13.2		6.9	9.9	
LOS		В	А		В	А	А	В		А	А	
Approach Delay		14.5			9.0			12.5			7.9	
Approach LOS		В			А			В			А	
Queue Length 50th (m)		6.0	0.0		2.9	3.4	0.3	2.7		4.2	2.2	
Queue Length 95th (m)		17.5	0.0		10.2	12.1	1.8	10.4		14.8	11.6	
Internal Link Dist (m)		159.2			155.1			102.4			264.5	

	≯	+	*	4	+	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)			15.0				18.0					
Base Capacity (vph)		873	833		890	958	782	1091		751	1103	
Starvation Cap Reductn		0	0		0	0	0	0		0	0	
Spillback Cap Reductn		0	0		0	0	0	0		0	0	
Storage Cap Reductn		0	0		0	0	0	0		0	0	
Reduced v/c Ratio		0.11	0.00		0.05	0.11	0.01	0.05		0.17	0.05	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 43	3.8											
Natural Cycle: 65												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.21												
Intersection Signal Delay:	10.1			In	itersectior	n LOS: B						
Intersection Capacity Utiliz	zation 44.9%			IC	CU Level of	of Service	А					
Analysis Period (min) 15												

Splits and Phases: 6: King Street West & William Street

Ø1	↑ ¶ø2		
8 s	29 s	28 s	
↑ ø₅	Ø6	₩ Ø8	
8 s	29 s	28 s	

	≯	+	*	4	+	•	•	t	*	*	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्स	1	<u></u>	A		۲.	A	
Traffic Volume (vph)	22	27	4	6	21	281	4	248	2	279	242	13
Future Volume (vph)	22	27	4	6	21	281	4	248	2	279	242	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		0.0	10.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	0		0	1		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1860	0	0	1581	1597	1190	3540	0	1750	3452	0
Flt Permitted		0.890			0.950		0.569			0.474		
Satd. Flow (perm)	0	1688	0	0	1518	1574	710	3540	0	870	3452	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		5				331		1			8	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		87.1			278.4			71.3			86.1	
Travel Time (s)		7.8			25.1			5.1			6.2	
Confl. Peds. (#/hr)	2	-	1	1	-	2	3	-	3	3	-	3
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles (%)	0%	0%	0%	3%	25%	0%	50%	3%	0%	2%	5%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	63	0	0	32	331	5	294	0	328	300	0
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	-	4		-	4	-	5	2		1	6	
Permitted Phases	4			4		4	2			6		
Detector Phase	4	4		4	4	4	5	2		1	6	
Switch Phase												
Minimum Initial (s)	15.0	15.0		15.0	15.0	15.0	6.0	10.0		6.0	10.0	
Minimum Split (s)	24.0	24.0		24.0	24.0	24.0	11.0	27.0		11.0	27.0	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	14.0	27.0		20.0	33.0	
Total Split (%)	34.7%	34.7%		34.7%	34.7%	34.7%	19.4%	37.5%		27.8%	45.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	5.0		3.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0			5.0	5.0	5.0	7.0		5.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	Max		None	Max	
Act Effct Green (s)		15.8			15.8	15.8	28.1	20.1		38.3	34.3	
Actuated g/C Ratio		0.25			0.25	0.25	0.44	0.31		0.60	0.54	
v/c Ratio		0.15			0.09	0.52	0.01	0.27		0.49	0.16	
Control Delay		19.5			20.1	6.1	6.8	18.0		9.2	8.7	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		19.5			20.1	6.1	6.8	18.0		9.2	8.7	
LOS		В			С	А	A	В		Α	A	
Approach Delay		19.5			7.4			17.9			9.0	
Approach LOS		В			А			В			A	
Queue Length 50th (m)		5.6			3.1	0.0	0.2	13.8		17.0	7.8	
Queue Length 95th (m)		14.2			9.0	14.6	1.4	25.0		31.9	20.2	
Internal Link Dist (m)		63.1			254.4			47.3			62.1	

CANDEVCON LIMITED

	٦	-	\mathbf{F}	4	+	•	1	1	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)							30.0			35.0		
Base Capacity (vph)		531			475	720	411	1107		726	1850	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.12			0.07	0.46	0.01	0.27		0.45	0.16	
Intersection Summary												
Area Type:	Other											
Cycle Length: 72												
Actuated Cycle Length: 64	.1											
Natural Cycle: 65												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.52												
Intersection Signal Delay:	11.0			In	tersectior	n LOS: B						
Intersection Capacity Utiliz	ation 61.1%			IC	U Level o	of Service	В					
Analysis Period (min) 15												

Splits and Phases: 3: William Street & University Avenue West

Ø1	Ø2		₩ø4	
20 s	27 s	2	25 s	
▲ ø5	Ø6			
14 s 33	S			

	≯	+	*	4	Ļ	•	•	t	*	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		ę	1	۲	eî 👘		۲	f,	
Traffic Volume (vph)	17	79	17	2	40	179	5	71	7	161	81	11
Future Volume (vph)	17	79	17	2	40	179	5	71	7	161	81	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	18.0		0.0	0.0		0.0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1843	1597	0	1917	1551	1785	1854	0	1716	1847	0
Flt Permitted		0.934			0.985		0.690			0.585		
Satd. Flow (perm)	0	1737	1557	0	1892	1551	1291	1854	0	1041	1847	0
Right Turn on Red			Yes			No			Yes			Yes
Satd. Flow (RTOR)			117					8			11	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.2			179.1			126.4			288.5	
Travel Time (s)		13.2			12.9			9.1			20.8	
Confl. Peds. (#/hr)	2		3	3			3		10	10		3
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	4%	0%	0%	0%	3%	0%	2%	0%	4%	1%	9%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	108	19	0	47	201	6	88	0	181	103	0
Turn Type	Perm	NA	Perm	Perm	NA	pt+ov	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8	. 18	5	2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8	18	5	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	27.0	27.0	27.0	27.0	27.0		8.0	26.0		8.0	26.0	
Total Split (s)	27.0	27.0	27.0	27.0	27.0		8.0	29.0		9.0	30.0	
Total Split (%)	41.5%	41.5%	41.5%	41.5%	41.5%		12.3%	44.6%		13.8%	46.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0		0.0	3.0		0.0	3.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0	7.0		7.0		3.0	7.0		3.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None		None	Min		None	Min	
Act Effct Green (s)		11.8	11.8		11.8	25.0	21.8	12.7		25.6	20.6	
Actuated g/C Ratio		0.25	0.25		0.25	0.52	0.46	0.27		0.53	0.43	
v/c Ratio		0.25	0.04		0.10	0.25	0.01	0.18		0.28	0.13	
Control Delay		16.1	0.2		14.4	7.3	6.4	14.4		7.6	10.1	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		16.1	0.2		14.4	7.3	6.4	14.4		7.6	10.1	
LOS		В	А		В	Α	А	В		Α	В	
Approach Delay		13.7			8.7			13.9			8.5	
Approach LOS		В			А			В			А	
Queue Length 50th (m)		6.9	0.0		2.9	7.2	0.3	5.0		6.3	3.9	
Queue Length 95th (m)		19.3	0.0		10.1	22.1	1.8	15.9		20.4	17.4	
Internal Link Dist (m)		159.2			155.1			102.4			264.5	

	٦	-	\mathbf{F}	∢	+	•	1	1	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)			15.0				18.0					
Base Capacity (vph)		740	730		807	838	641	873		643	921	
Starvation Cap Reductn		0	0		0	0	0	0		0	0	
Spillback Cap Reductn		0	0		0	0	0	0		0	0	
Storage Cap Reductn		0	0		0	0	0	0		0	0	
Reduced v/c Ratio		0.15	0.03		0.06	0.24	0.01	0.10		0.28	0.11	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 47	. .9											
Natural Cycle: 65												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.28												
Intersection Signal Delay:	10.1			In	tersectior	n LOS: B						
Intersection Capacity Utiliz	ation 45.7%			IC	U Level o	of Service	А					
Analysis Period (min) 15												

Splits and Phases: 6: King Street West & William Street

Ø1	≪1 ø2	₩ Ø4	
9 s	29 s	27 s	
▲ Ø5	Ø6	₩ Ø8	
8 s	30 s	27 s	

	۶	\mathbf{F}	•	t	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۰Y			-4↑	A	
Traffic Volume (veh/h)	3	2	1	266	256	1
Future Volume (Veh/h)	3	2	1	266	256	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	3	2	1	289	278	1
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				289	71	
pX, platoon unblocked	0.97	0.97	0.97			
vC, conflicting volume	425	140	279			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	352	58	202			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	100	100			
cM capacity (veh/h)	602	968	1330			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	5	97	193	185	94	
Volume Left	3	1	0	0	0	
Volume Right	2	0	0	0	1	
cSH	709	1330	1700	1700	1700	
Volume to Capacity	0.01	0.00	0.11	0.11	0.06	
Queue Length 95th (m)	0.01	0.00	0.0	0.0	0.0	
Control Delay (s)	10.2	0.0	0.0	0.0	0.0	
Lane LOS	B	0.1 A	0.0	0.0	0.0	
	ם 10.1	A 0.0		0.0		
Approach Delay (s) Approach LOS	B	0.0		0.0		
Approach LOS	D					
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utilization	n		18.0%	IC	CU Level a	of Service
Analysis Period (min)			15			

HCM Signalized Intersection Capacity Analysis 3: William Street & University Avenue West

	≯	+	\mathbf{F}	4	+	•	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ب ا	1	ľ	A1⊅		<u>ک</u>	A1⊅	
Traffic Volume (vph)	15	26	4	15	42	362	7	298	9	366	297	23
Future Volume (vph)	15	26	4	15	42	362	7	298	9	366	297	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		0.0	10.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	0		0	1		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1825	0	0	1896	1597	1785	3559	0	1767	3590	0
FIt Permitted		0.912			0.931		0.547			0.459		
Satd. Flow (perm)	0	1691	0	0	1788	1576	1023	3559	0	846	3590	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4				385		4			12	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		87.1			278.4			71.3			86.1	
Travel Time (s)		7.8			25.1			5.1			6.2	
Confl. Peds. (#/hr)	1		2	2		1	4		9	9		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0%	4%	0%	0%	0%	0%	0%	2%	0%	1%	0%	5%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	48	0	0	61	385	7	327	0	389	340	0
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			4		5	2		1	6	
Permitted Phases	4			4		4	2			6		
Detector Phase	4	4		4	4	4	5	2		1	6	
Switch Phase												
Minimum Initial (s)	15.0	15.0		15.0	15.0	15.0	6.0	10.0		6.0	10.0	
Minimum Split (s)	24.0	24.0		24.0	24.0	24.0	11.0	27.0		11.0	27.0	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	14.0	27.0		20.0	33.0	
Total Split (%)	34.7%	34.7%		34.7%	34.7%	34.7%	19.4%	37.5%		27.8%	45.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	5.0		3.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.0			5.0	5.0	5.0	7.0		5.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	_
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None	None	None	Max		None	Max	_
Act Effct Green (s)		15.8			15.8	15.8	28.1	20.1		39.3	35.3	
Actuated g/C Ratio		0.24			0.24	0.24	0.43	0.31		0.60	0.54	_
v/c Ratio		0.12			0.14	0.57	0.01	0.30		0.57	0.17	
Control Delay		19.5			21.0	6.5	6.9	18.6		10.3	8.6	_
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		19.5			21.0	6.5	6.9	18.6		10.3	8.6	_
LOS		B			C	А	A	B		В	A	
Approach Delay		19.5			8.4			18.3			9.5	
Approach LOS		В			A			В			A	
Queue Length 50th (m)		4.4			6.1	0.0	0.4	16.0		21.1	8.8	
Queue Length 95th (m)		12.3			15.2	19.4	1.8	29.2		41.7	23.7	
Internal Link Dist (m)		63.1			254.4			47.3			62.1	

CANDEVCON LIMITED

	٦	-	\mathbf{F}	4	+	•	1	1	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)							30.0			35.0		
Base Capacity (vph)		523			550	751	594	1099		723	1950	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.09			0.11	0.51	0.01	0.30		0.54	0.17	
Intersection Summary												
Area Type:	Other											
Cycle Length: 72												
Actuated Cycle Length: 65	.1											
Natural Cycle: 65												
Control Type: Actuated-Ur	coordinated											
Maximum v/c Ratio: 0.57												
Intersection Signal Delay:	11.4			In	tersectior	n LOS: B						
Intersection Capacity Utiliz	ation 66.1%			IC	CU Level o	of Service	С					
Analysis Period (min) 15												

Splits and Phases: 3: William Street & University Avenue West

Ø1	1 Ø2	₩_Ø4	
20 s	27 s	25 s	
★ ø5	Ø6		
14 s 3	33 s		

	۶	-	\mathbf{F}	4	ł	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ا	1		र्स	1	1	el el		5	el el	
Traffic Volume (vph)	10	82	3	1	45	113	6	53	5	141	59	8
Future Volume (vph)	10	82	3	1	45	113	6	53	5	141	59	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	18.0		0.0	0.0		0.0
Storage Lanes	0		1	0		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Satd. Flow (prot)	0	1824	1597	0	1796	1566	1785	1859	0	1785	1883	0
Flt Permitted		0.952			0.991		0.711			0.613		
Satd. Flow (perm)	0	1747	1550	0	1781	1566	1328	1859	0	1141	1883	0
Right Turn on Red			Yes			No			Yes			Yes
Satd. Flow (RTOR)			117					5			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.2			179.1			126.4			288.5	
Travel Time (s)		13.2			12.9			9.1			20.8	
Confl. Peds. (#/hr)			6	6			4		6	6		4
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	10%	4%	0%	0%	7%	2%	0%	2%	0%	0%	0%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	97	3	0	48	119	6	61	0	148	70	0
Turn Type	Perm	NA	Perm	Perm	NA	pt+ov	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8	. 18	5	2			6	
Permitted Phases	4		4	8			2			6		
Detector Phase	4	4	4	8	8	18	5	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	27.0	27.0	27.0	27.0	27.0		8.0	26.0		8.0	26.0	
Total Split (s)	28.0	28.0	28.0	28.0	28.0		8.0	29.0		8.0	29.0	
Total Split (%)	43.1%	43.1%	43.1%	43.1%	43.1%		12.3%	44.6%		12.3%	44.6%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		3.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0		0.0	3.0		0.0	3.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0	7.0		7.0		3.0	7.0		3.0	7.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None		None	Min		None	Min	
Act Effct Green (s)		11.9	11.9		11.9	22.2	23.8	17.7		25.7	22.8	
Actuated g/C Ratio		0.27	0.27		0.27	0.51	0.54	0.40		0.59	0.52	
v/c Ratio		0.21	0.01		0.10	0.15	0.01	0.08		0.20	0.07	
Control Delay		15.0	0.0		14.0	6.7	6.3	13.3		7.2	10.0	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.0	0.0		14.0	6.7	6.3	13.3		7.2	10.0	
LOS		В	А		В	А	А	В		А	В	
Approach Delay		14.5			8.8			12.7			8.1	
Approach LOS		В			A			В			А	
Queue Length 50th (m)		6.0	0.0		2.9	4.0	0.3	3.3		5.1	2.6	
Queue Length 95th (m)		17.5	0.0		10.2	13.9	1.8	12.0		17.1	13.1	
Internal Link Dist (m)		159.2			155.1			102.4			264.5	

	٦	-	\mathbf{F}	∢	-	*	1	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (m)			15.0				18.0					
Base Capacity (vph)		873	833		890	958	777	1092		746	1107	
Starvation Cap Reductn		0	0		0	0	0	0		0	0	
Spillback Cap Reductn		0	0		0	0	0	0		0	0	
Storage Cap Reductn		0	0		0	0	0	0		0	0	
Reduced v/c Ratio		0.11	0.00		0.05	0.12	0.01	0.06		0.20	0.06	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 43	.8											
Natural Cycle: 65												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.21												
Intersection Signal Delay:	10.0			In	tersectior	n LOS: B						
Intersection Capacity Utiliz	ation 44.9%			IC	U Level o	of Service	А					
Analysis Period (min) 15												

Splits and Phases: 6: King Street West & William Street

Ø1	™ ¶ø2		
8 s	29 s	28 s	
↑ ø5	Ø6	₩ Ø8	
8 s	29 s	28 s	

	٦	\mathbf{F}	1	1	ţ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Υ			-4↑	A	
Traffic Volume (veh/h)	2	2	2	174	314	4
Future Volume (Veh/h)	2	2	2	174	314	4
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	2	2	189	341	4
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				289	71	
pX, platoon unblocked	0.96	0.96	0.96			
vC, conflicting volume	442	172	345			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	339	59	238			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	100	100			
cM capacity (veh/h)	606	956	1274			
				0.5.4	00.0	
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	4	65	126	227	118	
Volume Left	2	2	0	0	0	
Volume Right	2	0	0	0	4	
cSH	742	1274	1700	1700	1700	
Volume to Capacity	0.01	0.00	0.07	0.13	0.07	
Queue Length 95th (m)	0.1	0.0	0.0	0.0	0.0	
Control Delay (s)	9.9	0.3	0.0	0.0	0.0	
Lane LOS	А	А				
Approach Delay (s)	9.9	0.1		0.0		
Approach LOS	А					
Intersection Summary						
Average Delay		0.1				
Intersection Capacity Utilization		18.8%	IC	U Level c	of Service	
Analysis Period (min)		10.070		5 201010		
			15			

APPENDIX E

EXCERPTS FROM THE TRANSPORTATION IMPACT STUDY PREPARED BY LEA CONSULTING LTD.

Transportation Impact Study

Proposed Residential Development iversity Avenue West, Town of Cobourg

1 INTRODUCTION

LEA Consulting Ltd. (LEA) was retained by Balder Corporation to prepare a Transportation Impact Study (TIS) in support of the rezoning application for the proposed residential development on 315-325 University Ave West in the Town of Cobourg (herein referred to as the Subject Site). The subject site is currently occupied by existing single-detached residential houses and. **Figure 1.1** shows the subject site and the immediate surrounding area.

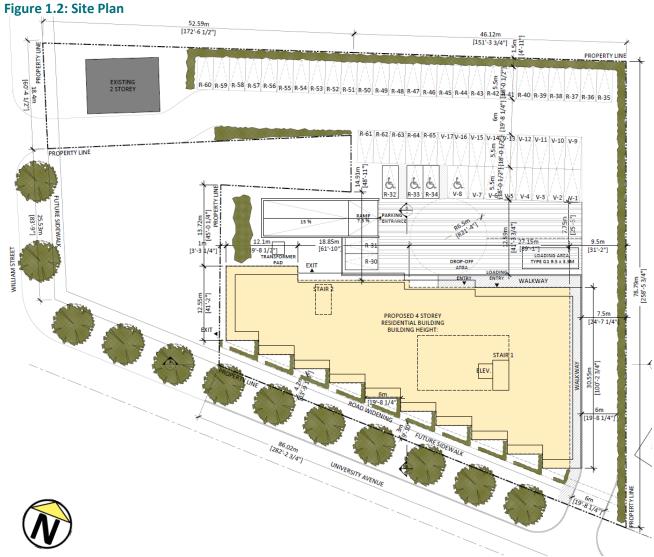


Figure 1.1: Site Location

The proposed development consists of a four-storey residential building, composed of 71 units, to be constructed on the subject site. It is proposed that the subject site will be accessible from an access on University Ave W and a shared access with the neighbouring existing two-storey building. The proposed site plan is shown in **Figure 1.2**.

Transportation Impact Study Proposed Residential Development 315-325 University Avenue West, Town of Cobourg

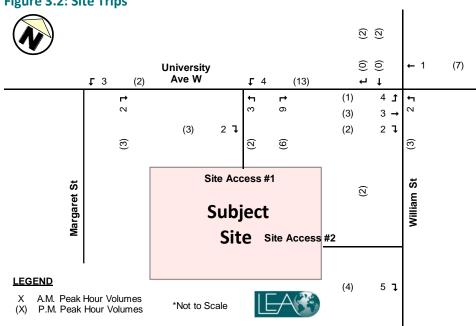
Source: Studio JCI (April 2019)

CANADA | INDIA | AFRICA | MIDDLE EAST

Transportation Impact Study

Proposed **Residential Development** iversity Avenue West, Town of Cobourg

A minor increase to the overall V/C of the signalized intersection is expected as a result of background traffic growth. As with the existing traffic condition, no capacity constraints are identified as all intersection movements are operating with a V/C below 0.85. All movements of interest are expected to continue operating significantly below capacity in the future background traffic condition. Detailed capacity analysis outputs can be found in Appendix C.


3.2 SITE TRAFFIC

Trip generation for the proposed development is based on the ITE Trip Generation Manual 10th Edition. Given the proposed use, LUC 221 Multifamily Housing (Mid-Rise) was used for the development. Table 3.2 summarizes the trip generation of the subject site.

Proposed Development				ay AM Pe icle Trips/		Weekday PM Peak Hour (Vehicle Trips/Unit)		
			In	Out	Total	In	Out	Total
Multifamily	71 units	Trips per Unit	0.09	0.23	0.32	0.25	0.16	0.41
Housing (Mid-Rise)		Trips Generated	6	17	23	17	12	29
	6	17	23	17	12	29		

Table 3.2: Site Trip Distribution

Trip distribution of these site trips is expected to follow the existing distribution of traffic in the studied network. Figure 3.2 illustrates the site trips.

Figure 3.2: Site Trips

3.3 FUTURE TOTAL TRAFFIC CONDITIONS

The future total traffic is the sum of the future background volumes and site-generated traffic. Access to the subject site will be provided from the Rear Lane. Future total volumes are illustrated in Figure 3.3. Movements of interests are summarized in Table 3.3.

